BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37397004)

  • 1. Impact of cell-free supernatant of
    Mao Y; Wang Y; Luo X; Chen X; Wang G
    Front Vet Sci; 2023; 10():1184989. PubMed ID: 37397004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Biofilm Activity of Cell-Free Supernatant of
    Kim YJ; Yu HH; Park YJ; Lee NK; Paik HD
    J Microbiol Biotechnol; 2020 Dec; 30(12):1854-1861. PubMed ID: 32958735
    [No Abstract]   [Full Text] [Related]  

  • 3. Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria.
    Benmouna Z; Dalache F; Zadi-Karam H; Karam NE; Vuotto C
    Adv Exp Med Biol; 2020; 1282():105-114. PubMed ID: 32034730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cell-free supernatant of
    Koohestani M; Moradi M; Tajik H; Badali A
    Vet Res Forum; 2018; 9(4):301-306. PubMed ID: 30713607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus.
    Mariam SH; Zegeye N; Tariku T; Andargie E; Endalafer N; Aseffa A
    BMC Res Notes; 2014 Sep; 7():606. PubMed ID: 25190588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Characterization and Metabolic Variations among Cell-Free Supernatants Produced by Selected Plant-Based Lactic Acid Bacteria.
    Qadi WSM; Mediani A; Kasim ZM; Misnan NM; Sani NA; Jamar NH
    Metabolites; 2023 Jul; 13(7):. PubMed ID: 37512555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of Lactic Acid Bacteria to Secretion of Bacteriocins.
    Urazova M; Moldagulova A; Anuarbekova S; Tuyakova A; Abitaeva G; Nagyzbekkyzy E; Bekenova E; Shaikhin S; Almagambetov K
    Cent Asian J Glob Health; 2013; 2(Suppl):106. PubMed ID: 29805865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Screening of Lactic Acid Bacteria With Antibacterial Activity Toward
    Christensen IB; Vedel C; Clausen ML; Kjærulff S; Agner T; Nielsen DS
    Front Microbiol; 2021; 12():733847. PubMed ID: 34603263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Biofilm Potential of
    Saidi N; Saderi H; Owlia P; Soleimani M
    Adv Biomed Res; 2023; 12():50. PubMed ID: 37057221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the antimicrobial function of Ginkgo biloba exocarp extract against clinical bacteria and its effect on Staphylococcus haemolyticus by disrupting biofilms.
    Wang C; Wei PW; Song CR; Wang X; Zhu GF; Yang YX; Xu GB; Hu ZQ; Tang L; Liu HM; Wang B
    J Ethnopharmacol; 2022 Nov; 298():115602. PubMed ID: 36030030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles.
    Yang S; Liu L; Wang J; Guo S; Liu G; Chen X; Deng X; Tu M; Tao Y; Rao Y
    Arch Microbiol; 2022 Sep; 204(10):637. PubMed ID: 36127470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant
    Ibraheim HK; Madhi KS; Baqer GK; Gharban HAJ
    Vet World; 2023 Mar; 16(3):491-499. PubMed ID: 37041833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of CodY and CcpA in Regulating Central Metabolism and Biofilm Formation in Staphylococcus aureus.
    Bulock LL; Ahn J; Shinde D; Pandey S; Sarmiento C; Thomas VC; Guda C; Bayles KW; Sadykov MR
    J Bacteriol; 2022 Jul; 204(7):e0061721. PubMed ID: 35735992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Evaluation of Bacteriocins Activity Against Listeria monocytogenes Biofilm Formation.
    Camargo AC; de Paula OA; Todorov SD; Nero LA
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1239-51. PubMed ID: 26660467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods.
    Mani-López E; Arrioja-Bretón D; López-Malo A
    Compr Rev Food Sci Food Saf; 2022 Jan; 21(1):604-641. PubMed ID: 34907656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis revives conventional antibiotics against Staphylococcus aureus osteomyelitis.
    Zhang F; Wang B; Liu S; Chen Y; Lin Y; Liu Z; Zhang X; Yu B
    Microb Cell Fact; 2021 May; 20(1):102. PubMed ID: 34001083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro antimicrobial activity of honokiol against Staphylococcus aureus in biofilm mode.
    Li WL; Zhao XC; Zhao ZW; Huang YJ; Zhu XZ; Meng RZ; Shi C; Yu L; Guo N
    J Asian Nat Prod Res; 2016 Dec; 18(12):1178-1185. PubMed ID: 27314764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-Molecule-Induced Activation of Cellular Respiration Inhibits Biofilm Formation and Triggers Metabolic Remodeling in Staphylococcus aureus.
    Okuda KI; Yamada-Ueno S; Yoshii Y; Nagano T; Okabe T; Kojima H; Mizunoe Y; Kinjo Y
    mBio; 2022 Aug; 13(4):e0084522. PubMed ID: 35852317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant
    Martin KH; Borlee GI; Wheat WH; Jackson M; Borlee BR
    Microbiology (Reading); 2020 Aug; 166(8):695-706. PubMed ID: 32459167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix.
    Mlynek KD; Bulock LL; Stone CJ; Curran LJ; Sadykov MR; Bayles KW; Brinsmade SR
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 32015143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.