BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37397448)

  • 1. Oscillatory neural network learning for pattern recognition: an on-chip learning perspective and implementation.
    Abernot M; Azemard N; Todri-Sanial A
    Front Neurosci; 2023; 17():1196796. PubMed ID: 37397448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital Implementation of Oscillatory Neural Network for Image Recognition Applications.
    Abernot M; Gil T; Jiménez M; Núñez J; Avellido MJ; Linares-Barranco B; Gonos T; Hardelin T; Todri-Sanial A
    Front Neurosci; 2021; 15():713054. PubMed ID: 34512246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning algorithms for oscillatory neural networks as associative memory for pattern recognition.
    Jiménez M; Avedillo MJ; Linares-Barranco B; Núñez J
    Front Neurosci; 2023; 17():1257611. PubMed ID: 38094002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks.
    Delacour C; Todri-Sanial A
    Front Neurosci; 2021; 15():694549. PubMed ID: 34819831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hardware Implementation of Differential Oscillatory Neural Networks Using VO
    Shamsi J; Avedillo MJ; Linares-Barranco B; Serrano-Gotarredona T
    Front Neurosci; 2021; 15():674567. PubMed ID: 34335158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-Performance Assessment of Oscillatory Neural Networks Based on VO
    Delacour C; Carapezzi S; Abernot M; Todri-Sanial A
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; PP():. PubMed ID: 37022082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-Inspired Techniques in a Fully Digital Approach for Lifelong Learning.
    Bianchi S; Muñoz-Martin I; Ielmini D
    Front Neurosci; 2020; 14():379. PubMed ID: 32425749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of coupled differential oscillator networks for versatile applications.
    Jiménez M; Núñez J; Shamsi J; Linares-Barranco B; Avedillo MJ
    Front Neurosci; 2023; 17():1294954. PubMed ID: 38111840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherent dot-product chip for sophisticated deep learning regression.
    Xu S; Wang J; Shu H; Zhang Z; Yi S; Bai B; Wang X; Liu J; Zou W
    Light Sci Appl; 2021 Nov; 10(1):221. PubMed ID: 34725322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient training and design of photonic neural network through neuroevolution.
    Zhang T; Wang J; Dan Y; Lanqiu Y; Dai J; Han X; Sun X; Xu K
    Opt Express; 2019 Dec; 27(26):37150-37163. PubMed ID: 31878500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A review of brain-like spiking neural network and its neuromorphic chip research].
    Zhang H; Xu G; Guo J; Guo L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):986-994. PubMed ID: 34713667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
    Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H
    Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation.
    Maeda Y; Wakamura M
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1664-72. PubMed ID: 16342505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic neuromorphic architecture for tens-of-task lifelong learning.
    Cheng Y; Zhang J; Zhou T; Wang Y; Xu Z; Yuan X; Fang L
    Light Sci Appl; 2024 Feb; 13(1):56. PubMed ID: 38403652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specification and implementation of a digital Hopfield-type associative memory with on-chip training.
    Johannet A; Personnaz L; Dreyfus G; Gascuel JD; Weinfeld M
    IEEE Trans Neural Netw; 1992; 3(4):529-39. PubMed ID: 18276455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced regularization for on-chip training using analog and temporary memory weights.
    Singhal R; Saraswat V; Deshmukh S; Subramoney S; Somappa L; Baghini MS; Ganguly U
    Neural Netw; 2023 Aug; 165():1050-1057. PubMed ID: 37478527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuromorphic architecture for object recognition and motion anticipation using burst-STDP.
    Nere A; Olcese U; Balduzzi D; Tononi G
    PLoS One; 2012; 7(5):e36958. PubMed ID: 22615855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Frequency Injection Locking Can Train Oscillatory Neural Networks to Compute in Phase.
    Todri-Sanial A; Carapezzi S; Delacour C; Abernot M; Gil T; Corti E; Karg SF; Nunez J; Jimenez M; Avedillo MJ; Linares-Barranco B
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1996-2009. PubMed ID: 34495849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.