These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37397880)

  • 1. Temporal Mapper: Transition networks in simulated and real neural dynamics.
    Zhang M; Chowdhury S; Saggar M
    Netw Neurosci; 2023; 7(2):431-460. PubMed ID: 37397880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering Dynamic Brain Reconfiguration in MEG Working Memory
    Duman AN; Tatar AE; Pirim H
    Brain Sci; 2019 Jun; 9(6):. PubMed ID: 31248185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-truth "resting-state" signal provides data-driven estimation and correction for scanner distortion of fMRI time-series dynamics.
    Kumar R; Tan L; Kriegstein A; Lithen A; Polimeni JR; Mujica-Parodi LR; Strey HH
    Neuroimage; 2021 Feb; 227():117584. PubMed ID: 33285328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuMapper: A scalable computational framework for multiscale exploration of the brain's dynamical organization.
    Geniesse C; Chowdhury S; Saggar M
    Netw Neurosci; 2022 Jun; 6(2):467-498. PubMed ID: 35733428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics.
    Berlemont K; Nadal JP
    J Neurosci; 2019 Jan; 39(5):833-853. PubMed ID: 30504276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birhythmic Analog Circuit Maze: A Nonlinear Neurostimulation Testbed.
    Jordan ID; Park IM
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.
    Chong KH; Zhang X; Zheng J
    PLoS One; 2018; 13(6):e0197838. PubMed ID: 29856751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-attractor repertoire provides new perspective on structure-function relationship in the brain.
    Zhang M; Sun Y; Saggar M
    Neuroimage; 2022 Oct; 259():119401. PubMed ID: 35732244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Investigation of the Dynamical Transitions in Harmonically Driven Random Networks of Firing-Rate Neurons.
    Nikiforou K; Mediano PAM; Shanahan M
    Cognit Comput; 2017; 9(3):351-363. PubMed ID: 28680506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-attractor modeling of resting-state functional connectivity in psychiatric disorders.
    Sun Y; Zhang M; Saggar M
    Neuroimage; 2023 Oct; 279():120302. PubMed ID: 37579998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis.
    Geniesse C; Sporns O; Petri G; Saggar M
    Netw Neurosci; 2019; 3(3):763-778. PubMed ID: 31410378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.
    Endo H; Hiroe N; Yamashita O
    Front Comput Neurosci; 2019; 13():91. PubMed ID: 32009922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.
    Zhuang X; Walsh RR; Sreenivasan K; Yang Z; Mishra V; Cordes D
    Neuroimage; 2018 May; 172():64-84. PubMed ID: 29355770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noisy network attractor models for transitions between EEG microstates.
    Creaser J; Ashwin P; Postlethwaite C; Britz J
    J Math Neurosci; 2021 Jan; 11(1):1. PubMed ID: 33394133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.