These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37397891)

  • 1. Pattern forming mechanisms of color vision.
    Burstein Z; Reid DD; Thomas PJ; Cowan JD
    Netw Neurosci; 2023; 7(2):679-711. PubMed ID: 37397891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic and contrast selectivity in color contrast adaptation.
    Mizokami Y; Paras C; Webster MA
    Vis Neurosci; 2004; 21(3):359-63. PubMed ID: 15518214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli.
    Hurme M; Koivisto M; Henriksson L; Railo H
    Neuropsychologia; 2020 Jan; 136():107266. PubMed ID: 31758972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Tilt" in color space: Hue changes induced by chromatic surrounds.
    Klauke S; Wachtler T
    J Vis; 2015; 15(13):17. PubMed ID: 26401624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatic gain controls in visual cortical neurons.
    Solomon SG; Lennie P
    J Neurosci; 2005 May; 25(19):4779-92. PubMed ID: 15888653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hue maps in primate striate cortex.
    Xiao Y; Casti A; Xiao J; Kaplan E
    Neuroimage; 2007 Apr; 35(2):771-86. PubMed ID: 17276087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primate striate and prestriate cortical neurons during discrimination. I. simultaneous temporal encoding of information about color and pattern.
    McClurkin JW; Optican LM
    J Neurophysiol; 1996 Jan; 75(1):481-95. PubMed ID: 8822572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Neuronal Network Model of the Primate Visual System: Color Mechanisms in the Retina, LGN and V1.
    Martínez-Cañada P; Morillas C; Pelayo F
    Int J Neural Syst; 2019 Mar; 29(2):1850036. PubMed ID: 30215284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pure tones modulate the representation of orientation and direction in the primary visual cortex.
    McClure JP; Polack PO
    J Neurophysiol; 2019 Jun; 121(6):2202-2214. PubMed ID: 30969800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of color stimuli in awake macaque primary visual cortex.
    Wachtler T; Sejnowski TJ; Albright TD
    Neuron; 2003 Feb; 37(4):681-91. PubMed ID: 12597864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual evoked cortical potential elicited by pseudoisochromatic stimulus.
    Salomão RC; Martins ICVDS; Risuenho BBO; Guimarães DL; Silveira LCL; Ventura DF; Souza GS
    Doc Ophthalmol; 2019 Feb; 138(1):43-54. PubMed ID: 30617670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque.
    Tailby C; Solomon SG; Dhruv NT; Lennie P
    J Neurosci; 2008 Jan; 28(5):1131-9. PubMed ID: 18234891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial frequency selectivity of the human visual cortex estimated with pseudo-random visual evoked cortical potential (VECP).
    Martins ICVS; Brasil A; Miquilini L; Goulart PRK; Herculano AM; Silveira LCL; Souza GS
    Vision Res; 2019 Dec; 165():13-21. PubMed ID: 31610286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatic adaptation, perceived location, and color tuning properties.
    McKeefry DJ; McGraw PV; Vakrou C; Whitaker D
    Vis Neurosci; 2004; 21(3):275-82. PubMed ID: 15518200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. V1 mechanisms underlying chromatic contrast detection.
    Hass CA; Horwitz GD
    J Neurophysiol; 2013 May; 109(10):2483-94. PubMed ID: 23446689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2.
    Navarro KT; Sanchez MJ; Engel SA; Olman CA; Weldon KB
    Neuroimage; 2021 Feb; 226():117520. PubMed ID: 33137474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging.
    Kuriki I; Sun P; Ueno K; Tanaka K; Cheng K
    Cereb Cortex; 2015 Dec; 25(12):4869-84. PubMed ID: 26423093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey.
    Komatsu H; Ideura Y
    J Neurophysiol; 1993 Aug; 70(2):677-94. PubMed ID: 8410167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.