BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 37397960)

  • 1. A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects
    Knabe C; Stiller M; Kampschulte M; Wilbig J; Peleska B; Günster J; Gildenhaar R; Berger G; Rack A; Linow U; Heiland M; Rendenbach C; Koerdt S; Steffen C; Houshmand A; Xiang-Tischhauser L; Adel-Khattab D
    Front Bioeng Biotechnol; 2023; 11():1221314. PubMed ID: 37397960
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro.
    Adel-Khattab D; Giacomini F; Gildenhaar R; Berger G; Gomes C; Linow U; Hardt M; Peleska B; Günster J; Stiller M; Houshmand A; Ghaffar KA; Gamal A; El-Mofty M; Knabe C
    J Tissue Eng Regen Med; 2018 Jan; 12(1):44-58. PubMed ID: 27860335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits.
    Vidal L; Brennan MÁ; Krissian S; De Lima J; Hoornaert A; Rosset P; Fellah BH; Layrolle P
    Acta Biomater; 2020 Sep; 114():384-394. PubMed ID: 32688088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects.
    Lopez CD; Diaz-Siso JR; Witek L; Bekisz JM; Cronstein BN; Torroni A; Flores RL; Rodriguez ED; Coelho PG
    J Surg Res; 2018 Mar; 223():115-122. PubMed ID: 29433862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold.
    Gao B; Jing H; Gao M; Wang S; Fu W; Zhang X; He X; Zheng J
    Acta Biomater; 2019 Oct; 97():177-186. PubMed ID: 31352107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form and functional repair of long bone using 3D-printed bioactive scaffolds.
    Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG
    J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed, bioactive ceramic scaffold with rhBMP-2 in treating critical femoral bone defects in rabbits using the induced membrane technique.
    Cho JW; Kim BS; Yeo DH; Lim EJ; Sakong S; Lim J; Park S; Jeong YH; Jung TG; Choi H; Oh CW; Kim HJ; Park JW; Oh JK
    J Orthop Res; 2021 Dec; 39(12):2671-2680. PubMed ID: 33580542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.
    Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H
    Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds.
    Vidal L; Kampleitner C; Krissian S; Brennan MÁ; Hoffmann O; Raymond Y; Maazouz Y; Ginebra MP; Rosset P; Layrolle P
    Sci Rep; 2020 Apr; 10(1):7068. PubMed ID: 32341459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment.
    Jiang W; Zhan Y; Zhang Y; Sun D; Zhang G; Wang Z; Chen L; Sun J
    Biomaterials; 2024 Jul; 308():122566. PubMed ID: 38603824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia.
    Yang YP; Gadomski BC; Bruyas A; Easley J; Labus KM; Nelson B; Palmer RH; Stewart H; McGilvray K; Puttlitz CM; Regan D; Stahl A; Lui E; Li J; Moeinzadeh S; Kim S; Maloney W; Gardner MJ
    Tissue Eng Part A; 2021 Dec; 27(23-24):1458-1469. PubMed ID: 33858216
    [No Abstract]   [Full Text] [Related]  

  • 13. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.
    Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G
    Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds.
    Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG
    J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological response of 3D-printed
    Tian Y; Ma H; Yu X; Feng B; Yang Z; Zhang W; Wu C
    Biomed Mater; 2023 Mar; 18(3):. PubMed ID: 36898162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering.
    Chen D; Chen G; Zhang X; Chen J; Li J; Kang K; He W; Kong Y; Wu L; Su B; Zhao K; Si D; Wang X
    Biotechnol Bioeng; 2022 Nov; 119(11):3297-3310. PubMed ID: 35923072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis.
    Liu X; Zhao N; Liang H; Tan B; Huang F; Hu H; Chen Y; Wang G; Ling Z; Liu C; Miao Y; Wang Y; Zou X
    J Orthop Translat; 2022 Nov; 37():152-162. PubMed ID: 36380884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed Sr
    Pan H; Deng L; Huang L; Zhang Q; Yu J; Huang Y; Chen L; Chang J
    Front Bioeng Biotechnol; 2022; 10():1007535. PubMed ID: 36185424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.