BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37398129)

  • 1. Cyanide-dependent control of terminal oxidase hybridization by
    Smiley MK; Sekaran DC; Price-Whelan A; Dietrich LEP
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398129
    [No Abstract]   [Full Text] [Related]  

  • 2. MpaR-driven expression of an orphan terminal oxidase subunit supports
    Smiley MK; Sekaran DC; Forouhar F; Wolin E; Jovanovic M; Price-Whelan A; Dietrich LEP
    mBio; 2024 Jan; 15(1):e0292623. PubMed ID: 38112469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An orphan
    Jo J; Cortez KL; Cornell WC; Price-Whelan A; Dietrich LE
    Elife; 2017 Nov; 6():. PubMed ID: 29160206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of multiple
    Hirai T; Osamura T; Ishii M; Arai H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(45):12815-12819. PubMed ID: 27791152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated regulation of anthranilate metabolism and bacterial virulence by the GntR family regulator MpaR in Pseudomonas aeruginosa.
    Wang T; Qi Y; Wang Z; Zhao J; Ji L; Li J; Cai Z; Yang L; Wu M; Liang H
    Mol Microbiol; 2020 Nov; 114(5):857-869. PubMed ID: 32748556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to
    Nastasi MR; Caruso L; Giordano F; Mellini M; Rampioni G; Giuffrè A; Forte E
    Antioxidants (Basel); 2024 Mar; 13(3):. PubMed ID: 38539916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.
    Kawakami T; Kuroki M; Ishii M; Igarashi Y; Arai H
    Environ Microbiol; 2010 Jun; 12(6):1399-412. PubMed ID: 19930444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa.
    Arai H
    Front Microbiol; 2011; 2():103. PubMed ID: 21833336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1.
    Hamada M; Toyofuku M; Miyano T; Nomura N
    J Bacteriol; 2014 Nov; 196(22):3881-9. PubMed ID: 25182494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases.
    Morales G; Ugidos A; Rojo F
    Environ Microbiol; 2006 Oct; 8(10):1764-74. PubMed ID: 16958757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa.
    Cunningham L; Williams HD
    J Bacteriol; 1995 Jan; 177(2):432-8. PubMed ID: 7814333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell.
    Kohlstaedt M; Buschmann S; Xie H; Resemann A; Warkentin E; Langer JD; Michel H
    mBio; 2016 Jan; 7(1):e01921-15. PubMed ID: 26814183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator.
    Ugidos A; Morales G; Rial E; Williams HD; Rojo F
    Environ Microbiol; 2008 Jul; 10(7):1690-702. PubMed ID: 18341582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the physiological relationship between the cyanide-insensitive oxidase and cyanide production in Pseudomonas aeruginosa.
    Zlosnik JEA; Tavankar GR; Bundy JG; Mossialos D; O'Toole R; Williams HD
    Microbiology (Reading); 2006 May; 152(Pt 5):1407-1415. PubMed ID: 16622057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa.
    Cooper M; Tavankar GR; Williams HD
    Microbiology (Reading); 2003 May; 149(Pt 5):1275-1284. PubMed ID: 12724389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen reactivity of both respiratory oxidases in Campylobacter jejuni: the cydAB genes encode a cyanide-resistant, low-affinity oxidase that is not of the cytochrome bd type.
    Jackson RJ; Elvers KT; Lee LJ; Gidley MD; Wainwright LM; Lightfoot J; Park SF; Poole RK
    J Bacteriol; 2007 Mar; 189(5):1604-15. PubMed ID: 17172349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa.
    Williams HD; Zlosnik JE; Ryall B
    Adv Microb Physiol; 2007; 52():1-71. PubMed ID: 17027370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase.
    Comolli JC; Donohue TJ
    Mol Microbiol; 2002 Aug; 45(3):755-68. PubMed ID: 12139621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light/Dark and Temperature Cycling Modulate Metabolic Electron Flow in Pseudomonas aeruginosa Biofilms.
    Kahl LJ; Eckartt KN; Morales DK; Price-Whelan A; Dietrich LEP
    mBio; 2022 Aug; 13(4):e0140722. PubMed ID: 35938725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.