BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37398129)

  • 21. Conditional quorum-sensing induction of a cyanide-insensitive terminal oxidase stabilizes cooperating populations of Pseudomonas aeruginosa.
    Yan H; Asfahl KL; Li N; Sun F; Xiao J; Shen D; Dandekar AA; Wang M
    Nat Commun; 2019 Nov; 10(1):4999. PubMed ID: 31676850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa.
    Ray A; Williams HD
    FEMS Microbiol Lett; 1997 Nov; 156(2):227-32. PubMed ID: 9513270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa.
    Hagins JM; Locy R; Silo-Suh L
    J Bacteriol; 2009 Oct; 191(20):6335-9. PubMed ID: 19700524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases.
    Cunningham L; Pitt M; Williams HD
    Mol Microbiol; 1997 May; 24(3):579-91. PubMed ID: 9179851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections.
    Ferrara S; Rossi A; Ranucci S; De Fino I; Bragonzi A; Cigana C; Bertoni G
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of D-amino acid dehydrogenase on virulence factor production by a Pseudomonas aeruginosa.
    Oliver KE; Silo-Suh L
    Can J Microbiol; 2013 Sep; 59(9):598-603. PubMed ID: 24011342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas aeruginosa Production of Hydrogen Cyanide Leads to Airborne Control of Staphylococcus aureus Growth in Biofilm and
    Létoffé S; Wu Y; Darch SE; Beloin C; Whiteley M; Touqui L; Ghigo JM
    mBio; 2022 Oct; 13(5):e0215422. PubMed ID: 36129311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader
    Sandri F; Fedi S; Cappelletti M; Calabrese FM; Turner RJ; Zannoni D
    Front Microbiol; 2017; 8():1223. PubMed ID: 28713350
    [No Abstract]   [Full Text] [Related]  

  • 29. Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases.
    Comolli JC; Donohue TJ
    Mol Microbiol; 2004 Feb; 51(4):1193-203. PubMed ID: 14763990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Essential role of cytochrome bd-related oxidase in cyanide resistance of Pseudomonas pseudoalcaligenes CECT5344.
    Quesada A; Guijo MI; Merchán F; Blázquez B; Igeño MI; Blasco R
    Appl Environ Microbiol; 2007 Aug; 73(16):5118-24. PubMed ID: 17574992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of the
    Kučera I; Sedláček V
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32806683
    [No Abstract]   [Full Text] [Related]  

  • 32. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa.
    Arai H; Kawakami T; Osamura T; Hirai T; Sakai Y; Ishii M
    J Bacteriol; 2014 Dec; 196(24):4206-15. PubMed ID: 25182500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific expression and function of the A-type cytochrome c oxidase under starvation conditions in Pseudomonas aeruginosa.
    Osamura T; Kawakami T; Kido R; Ishii M; Arai H
    PLoS One; 2017; 12(5):e0177957. PubMed ID: 28542449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner.
    Cody WL; Pritchett CL; Jones AK; Carterson AJ; Jackson D; Frisk A; Wolfgang MC; Schurr MJ
    J Bacteriol; 2009 May; 191(9):2993-3002. PubMed ID: 19270096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in
    Kahl LJ; Price-Whelan A; Dietrich LEP
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudomonas aeruginosa
    Van Laar TA; Esani S; Birges TJ; Hazen B; Thomas JM; Rawat M
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29669887
    [No Abstract]   [Full Text] [Related]  

  • 37. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.
    Tielen P; Rosin N; Meyer AK; Dohnt K; Haddad I; Jänsch L; Klein J; Narten M; Pommerenke C; Scheer M; Schobert M; Schomburg D; Thielen B; Jahn D
    PLoS One; 2013; 8(8):e71845. PubMed ID: 23967252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa.
    Carterson AJ; Morici LA; Jackson DW; Frisk A; Lizewski SE; Jupiter R; Simpson K; Kunz DA; Davis SH; Schurr JR; Hassett DJ; Schurr MJ
    J Bacteriol; 2004 Oct; 186(20):6837-44. PubMed ID: 15466037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host.
    Hammer ND; Reniere ML; Cassat JE; Zhang Y; Hirsch AO; Indriati Hood M; Skaar EP
    mBio; 2013 Jul; 4(4):. PubMed ID: 23900169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
    Recinos DA; Sekedat MD; Hernandez A; Cohen TS; Sakhtah H; Prince AS; Price-Whelan A; Dietrich LE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19420-5. PubMed ID: 23129634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.