These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37398371)
1. Altered methionine metabolism impacts phenylpropanoid production and plant development in Shin D; Perez VC; Dickinson GK; Zhao H; Dai R; Tomiczek B; Cho KH; Zhu N; Koh J; Grenning A; Kim J bioRxiv; 2023 May; ():. PubMed ID: 37398371 [TBL] [Abstract][Full Text] [Related]
2. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. Shin D; Perez VC; Dickinson GK; Zhao H; Dai R; Tomiczek B; Cho KH; Zhu N; Koh J; Grenning A; Kim J Plant J; 2023 Oct; 116(1):187-200. PubMed ID: 37366635 [TBL] [Abstract][Full Text] [Related]
3. Metabolite analysis of Arabidopsis Perez VC; Dai R; Block AK; Kim J Plant Signal Behav; 2021 Nov; 16(11):1966586. PubMed ID: 34429019 [TBL] [Abstract][Full Text] [Related]
4. Aldoxime Metabolism Is Linked to Phenylpropanoid Production in Zhang D; Song YH; Dai R; Lee TG; Kim J Front Plant Sci; 2020; 11():17. PubMed ID: 32117366 [TBL] [Abstract][Full Text] [Related]
5. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. Kim JI; Dolan WL; Anderson NA; Chapple C Plant Cell; 2015 May; 27(5):1529-46. PubMed ID: 25944103 [TBL] [Abstract][Full Text] [Related]
6. Aldoximes are precursors of auxins in Arabidopsis and maize. Perez VC; Dai R; Bai B; Tomiczek B; Askey BC; Zhang Y; Rubin GM; Ding Y; Grenning A; Block AK; Kim J New Phytol; 2021 Aug; 231(4):1449-1461. PubMed ID: 33959967 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Hemm MR; Ruegger MO; Chapple C Plant Cell; 2003 Jan; 15(1):179-94. PubMed ID: 12509530 [TBL] [Abstract][Full Text] [Related]
8. Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. Kim JI; Zhang X; Pascuzzi PE; Liu CJ; Chapple C New Phytol; 2020 Jan; 225(1):154-168. PubMed ID: 31408530 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Mikkelsen MD; Naur P; Halkier BA Plant J; 2004 Mar; 37(5):770-7. PubMed ID: 14871316 [TBL] [Abstract][Full Text] [Related]
10. Cytochrome p450 CYP79F1 from arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. Hansen CH; Wittstock U; Olsen CE; Hick AJ; Pickett JA; Halkier BA J Biol Chem; 2001 Apr; 276(14):11078-85. PubMed ID: 11133994 [TBL] [Abstract][Full Text] [Related]
11. Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Nonhebel H; Yuan Y; Al-Amier H; Pieck M; Akor E; Ahamed A; Cohen JD; Celenza JL; Normanly J Phytochemistry; 2011 Jan; 72(1):37-48. PubMed ID: 21111431 [TBL] [Abstract][Full Text] [Related]
12. Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1. Yu SI; Kim H; Yun DJ; Suh MC; Lee BH Plant Mol Biol; 2019 Jan; 99(1-2):135-148. PubMed ID: 30542810 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Frerigmann H; Piślewska-Bednarek M; Sánchez-Vallet A; Molina A; Glawischnig E; Gigolashvili T; Bednarek P Mol Plant; 2016 May; 9(5):682-695. PubMed ID: 26802248 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. Wang B; Zhao X; Zhao Y; Shanklin J; Zhao Q; Liu CJ New Phytol; 2021 Mar; 229(6):3345-3359. PubMed ID: 33253431 [TBL] [Abstract][Full Text] [Related]
15. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Sugawara S; Hishiyama S; Jikumaru Y; Hanada A; Nishimura T; Koshiba T; Zhao Y; Kamiya Y; Kasahara H Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5430-5. PubMed ID: 19279202 [TBL] [Abstract][Full Text] [Related]
16. CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species. Luck K; Jirschitzka J; Irmisch S; Huber M; Gershenzon J; Köllner TG BMC Plant Biol; 2016 Oct; 16(1):215. PubMed ID: 27716065 [TBL] [Abstract][Full Text] [Related]
17. A Novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Kong W; Li Y; Zhang M; Jin F; Li J Plant Cell Physiol; 2015 Apr; 56(4):715-26. PubMed ID: 25552472 [TBL] [Abstract][Full Text] [Related]
18. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Glawischnig E; Hansen BG; Olsen CE; Halkier BA Proc Natl Acad Sci U S A; 2004 May; 101(21):8245-50. PubMed ID: 15148388 [TBL] [Abstract][Full Text] [Related]
19. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412 [TBL] [Abstract][Full Text] [Related]
20. Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis. Anderson NA; Bonawitz ND; Nyffeler K; Chapple C Plant Physiol; 2015 Nov; 169(3):1557-67. PubMed ID: 26048881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]