BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 37398674)

  • 1. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade.
    Tian W; Qin G; Jia M; Li W; Cai W; Wang H; Zhao Y; Bao X; Wei W; Zhang Y; Shao Q
    Front Immunol; 2023; 14():1198551. PubMed ID: 37398674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOX-expressing terminally exhausted tumor-infiltrating CD8
    Han HS; Jeong S; Kim H; Kim HD; Kim AR; Kwon M; Park SH; Woo CG; Kim HK; Lee KH; Seo SP; Kang HW; Kim WT; Kim WJ; Yun SJ; Shin EC
    Cancer Lett; 2021 Feb; 499():137-147. PubMed ID: 33249194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer.
    Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I
    Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors.
    Khan SM; Desai R; Coxon A; Livingstone A; Dunn GP; Petti A; Johanns TM
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36543376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer.
    McLane LM; Abdel-Hakeem MS; Wherry EJ
    Annu Rev Immunol; 2019 Apr; 37():457-495. PubMed ID: 30676822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8
    Pichler AC; Cannons JL; Schwartzberg PL
    Front Immunol; 2022; 13():926714. PubMed ID: 35874734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD8
    Dolina JS; Van Braeckel-Budimir N; Thomas GD; Salek-Ardakani S
    Front Immunol; 2021; 12():715234. PubMed ID: 34354714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy.
    Hao L; Li S; Hu X
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):12543-12560. PubMed ID: 37423958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitherapy and immune checkpoint blockade: using epigenetic reinvigoration of exhausted and dysfunctional T cells to reimburse immunotherapy response.
    McGoverne I; Dunn J; Batham J; Tu WJ; Chrisp J; Rao S
    BMC Immunol; 2020 Apr; 21(1):22. PubMed ID: 32316916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.
    Budimir N; Thomas GD; Dolina JS; Salek-Ardakani S
    Cancer Immunol Res; 2022 Feb; 10(2):146-153. PubMed ID: 34937730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective control of transposable element expression during T cell exhaustion and anti-PD-1 treatment.
    Bonté PE; Metoikidou C; Heurtebise-Chretien S; Arribas YA; Sutra Del Galy A; Ye M; Niborski LL; Zueva E; Piaggio E; Seguin-Givelet A; Girard N; Alanio C; Burbage M; Goudot C; Amigorena S
    Sci Immunol; 2023 Oct; 8(88):eadf8838. PubMed ID: 37889984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling T-cell Exhaustion: Genetic Screening Meets In Vitro Modeling.
    Schmid D; Auf der Maur P; Trefny MP; Zippelius A
    Cancer Res; 2023 Dec; 83(23):3830-3832. PubMed ID: 37855668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insufficiency of compound immune checkpoint blockade to overcome engineered T cell exhaustion in pancreatic cancer.
    Stromnes IM; Hulbert A; Rollins MR; Basom RS; Delrow J; Bonson P; Burrack AL; Hingorani SR; Greenberg PD
    J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35210305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct exhaustion features of T lymphocytes shape the tumor-immune microenvironment with therapeutic implication in patients with non-small-cell lung cancer.
    Kim CG; Kim G; Kim KH; Park S; Shin S; Yeo D; Shim HS; Yoon HI; Park SY; Ha SJ; Kim HR
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34907028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition.
    Zhao M; Li L; Kiernan CH; Castro Eiro MD; Dammeijer F; van Meurs M; Brouwers-Haspels I; Wilmsen MEP; Grashof DGB; van de Werken HJG; Hendriks RW; Aerts JG; Mueller YM; Katsikis PD
    Sci Rep; 2023 Sep; 13(1):15678. PubMed ID: 37735204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical implications of T cell exhaustion for cancer immunotherapy.
    Chow A; Perica K; Klebanoff CA; Wolchok JD
    Nat Rev Clin Oncol; 2022 Dec; 19(12):775-790. PubMed ID: 36216928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment.
    Luo H; Wang W; Mai J; Yin R; Cai X; Li Q
    Front Immunol; 2023; 14():1267918. PubMed ID: 37881432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Mass Cytometry to Profile Human T Cell Exhaustion.
    Winkler F; Bengsch B
    Front Immunol; 2019; 10():3039. PubMed ID: 32038613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of CD8 T-cell exhaustion heterogeneity and the therapeutic potentials in cancer.
    Zhang J; Lei F; Tan H
    Front Immunol; 2023; 14():1166128. PubMed ID: 37275913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOX transcriptionally and epigenetically programs CD8
    Khan O; Giles JR; McDonald S; Manne S; Ngiow SF; Patel KP; Werner MT; Huang AC; Alexander KA; Wu JE; Attanasio J; Yan P; George SM; Bengsch B; Staupe RP; Donahue G; Xu W; Amaravadi RK; Xu X; Karakousis GC; Mitchell TC; Schuchter LM; Kaye J; Berger SL; Wherry EJ
    Nature; 2019 Jul; 571(7764):211-218. PubMed ID: 31207603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.