These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37399236)

  • 21. gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support.
    Irrgang ME; Davis C; Kasson PM
    PLoS Comput Biol; 2022 Feb; 18(2):e1009835. PubMed ID: 35157693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New faster CHARMM molecular dynamics engine.
    Hynninen AP; Crowley MF
    J Comput Chem; 2014 Feb; 35(5):406-13. PubMed ID: 24302199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.
    Lemkul JA; Roux B; van der Spoel D; MacKerell AD
    J Comput Chem; 2015 Jul; 36(19):1473-9. PubMed ID: 25962472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.
    Kim S; Lee J; Jo S; Brooks CL; Lee HS; Im W
    J Comput Chem; 2017 Jun; 38(21):1879-1886. PubMed ID: 28497616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OBGMX: a web-based generator of GROMACS topologies for molecular and periodic systems using the universal force field.
    Garberoglio G
    J Comput Chem; 2012 Oct; 33(27):2204-8. PubMed ID: 22718537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pairwise-additive and polarizable atomistic force fields for molecular dynamics simulations of proteins.
    Lemkul JA
    Prog Mol Biol Transl Sci; 2020; 170():1-71. PubMed ID: 32145943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force Fields for Small Molecules.
    Lin FY; MacKerell AD
    Methods Mol Biol; 2019; 2022():21-54. PubMed ID: 31396898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR refinement and peptide folding using the GROMACS software.
    Sinelnikova A; Spoel DV
    J Biomol NMR; 2021 May; 75(4-5):143-149. PubMed ID: 33778935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ACPYPE web server for small-molecule MD topology generation.
    Kagami L; Wilter A; Diaz A; Vranken W
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37252824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.
    Jo S; Cheng X; Islam SM; Huang L; Rui H; Zhu A; Lee HS; Qi Y; Han W; Vanommeslaeghe K; MacKerell AD; Roux B; Im W
    Adv Protein Chem Struct Biol; 2014; 96():235-65. PubMed ID: 25443960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins.
    Kognole AA; Aytenfisu AH; MacKerell AD
    J Phys Chem B; 2022 Sep; 126(35):6642-6653. PubMed ID: 36005290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
    Qi Y; Ingólfsson HI; Cheng X; Lee J; Marrink SJ; Im W
    J Chem Theory Comput; 2015 Sep; 11(9):4486-94. PubMed ID: 26575938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GROMACS: fast, flexible, and free.
    Van Der Spoel D; Lindahl E; Hess B; Groenhof G; Mark AE; Berendsen HJ
    J Comput Chem; 2005 Dec; 26(16):1701-18. PubMed ID: 16211538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CHARMM-GUI supports the Amber force fields.
    Lee J; Hitzenberger M; Rieger M; Kern NR; Zacharias M; Im W
    J Chem Phys; 2020 Jul; 153(3):035103. PubMed ID: 32716185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHARMM: the biomolecular simulation program.
    Brooks BR; Brooks CL; Mackerell AD; Nilsson L; Petrella RJ; Roux B; Won Y; Archontis G; Bartels C; Boresch S; Caflisch A; Caves L; Cui Q; Dinner AR; Feig M; Fischer S; Gao J; Hodoscek M; Im W; Kuczera K; Lazaridis T; Ma J; Ovchinnikov V; Paci E; Pastor RW; Post CB; Pu JZ; Schaefer M; Tidor B; Venable RM; Woodcock HL; Wu X; Yang W; York DM; Karplus M
    J Comput Chem; 2009 Jul; 30(10):1545-614. PubMed ID: 19444816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The distributed diagonal force decomposition method for parallelizing molecular dynamics simulations.
    Borštnik U; Miller BT; Brooks BR; Janežič D
    J Comput Chem; 2011 Nov; 32(14):3005-13. PubMed ID: 21793007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.
    Riniker S
    J Chem Inf Model; 2018 Mar; 58(3):565-578. PubMed ID: 29510041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.
    Kukic P; Kannan A; Dijkstra MJ; Abeln S; Camilloni C; Vendruscolo M
    PLoS Comput Biol; 2015 Oct; 11(10):e1004435. PubMed ID: 26505754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS.
    Niranjan V; Rao P; Uttarkar A; Kumar J
    PLoS One; 2023; 18(8):e0288264. PubMed ID: 37535543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.