These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721 [TBL] [Abstract][Full Text] [Related]
23. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Gao M; Salla M; Song Y; Wang Q Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142 [TBL] [Abstract][Full Text] [Related]
24. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Hu B; Tang Y; Luo J; Grove G; Guo Y; Liu TL Chem Commun (Camb); 2018 Jun; 54(50):6871-6874. PubMed ID: 29741542 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical implications of modulating the solvation shell around redox active organic species in aqueous organic redox flow batteries. Sharma K; Sankarasubramanian S; Parrondo J; Ramani V Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417296 [TBL] [Abstract][Full Text] [Related]
26. Polypeptide organic radical batteries. Nguyen TP; Easley AD; Kang N; Khan S; Lim SM; Rezenom YH; Wang S; Tran DK; Fan J; Letteri RA; He X; Su L; Yu CH; Lutkenhaus JL; Wooley KL Nature; 2021 May; 593(7857):61-66. PubMed ID: 33953410 [TBL] [Abstract][Full Text] [Related]
27. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries. Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001 [TBL] [Abstract][Full Text] [Related]
28. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
29. Electron transfer between the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and viologens. 1. Investigations by cyclic voltammetry. Hoogvliet JC; Lievense LC; van Dijk C; Veeger C Eur J Biochem; 1988 Jun; 174(2):273-80. PubMed ID: 3289919 [TBL] [Abstract][Full Text] [Related]
30. Addressing Practical Use of Viologen-Derivatives in Redox Flow Batteries through Molecular Engineering. Rubio-Presa R; Lubián L; Borlaf M; Ventosa E; Sanz R ACS Mater Lett; 2023 Mar; 5(3):798-802. PubMed ID: 36911231 [TBL] [Abstract][Full Text] [Related]
31. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. Kong T; Li J; Wang W; Zhou X; Xie Y; Ma J; Li X; Wang Y ACS Appl Mater Interfaces; 2024 Jan; 16(1):752-760. PubMed ID: 38132704 [TBL] [Abstract][Full Text] [Related]
32. Design Strategies and Redox-Dependent Applications of Insoluble Viologen-Based Covalent Organic Polymers. Škorjanc T; Shetty D; Olson MA; Trabolsi A ACS Appl Mater Interfaces; 2019 Feb; 11(7):6705-6716. PubMed ID: 30667215 [TBL] [Abstract][Full Text] [Related]
33. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. Hu B; DeBruler C; Rhodes Z; Liu TL J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765 [TBL] [Abstract][Full Text] [Related]
34. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries. Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714 [TBL] [Abstract][Full Text] [Related]
35. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Walser-Kuntz R; Yan Y; Sigman M; Sanford MS Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181 [TBL] [Abstract][Full Text] [Related]
36. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery. Janoschka T; Friebe C; Hager MD; Martin N; Schubert US ChemistryOpen; 2017 Apr; 6(2):216-220. PubMed ID: 28413754 [TBL] [Abstract][Full Text] [Related]
37. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Liu X; Li T; Zhang C; Li X Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307796. PubMed ID: 37389543 [TBL] [Abstract][Full Text] [Related]
38. Redox Species of Redox Flow Batteries: A Review. Pan F; Wang Q Molecules; 2015 Nov; 20(11):20499-517. PubMed ID: 26593894 [TBL] [Abstract][Full Text] [Related]
39. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052 [TBL] [Abstract][Full Text] [Related]
40. Viologens as charge carriers in a polymer-based battery anode. Sen S; Saraidaridis J; Kim SY; Palmore GT ACS Appl Mater Interfaces; 2013 Aug; 5(16):7825-30. PubMed ID: 23927403 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]