These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37399326)

  • 1. Highly Abundant Proteins Are Highly Thermostable.
    Luzuriaga-Neira AR; Ritchie AM; Payne BL; Carrillo-Parramon O; Liberles DA; Alvarez-Ponce D
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37399326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Domains of Transmembrane Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Sarkar C; Alvarez-Ponce D
    Genome Biol Evol; 2022 Jan; 14(1):. PubMed ID: 34665250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy Underlies the Universal Abundance-Evolutionary Rate Correlation Seen in Proteins.
    Razban RM
    Mol Biol Evol; 2019 Sep; 36(9):1955-1963. PubMed ID: 31093676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly.
    Yang JR; Liao BY; Zhuang SM; Zhang J
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):E831-40. PubMed ID: 22416125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of translational error-induced and error-free misfolding on the rate of protein evolution.
    Yang JR; Zhuang SM; Zhang J
    Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    Mol Biol Evol; 2017 Mar; 34(3):692-706. PubMed ID: 28007979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein biophysics explains why highly abundant proteins evolve slowly.
    Serohijos AW; Rimas Z; Shakhnovich EI
    Cell Rep; 2012 Aug; 2(2):249-56. PubMed ID: 22938865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why highly expressed proteins evolve slowly.
    Drummond DA; Bloom JD; Adami C; Wilke CO; Arnold FH
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14338-43. PubMed ID: 16176987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relationship between the Misfolding Avoidance Hypothesis and Protein Evolutionary Rates in the Light of Empirical Evidence.
    Usmanova DR; Plata G; Vitkup D
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33432359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point mutations in protein globular domains: contributions from function, stability and misfolding.
    Sánchez IE; Tejero J; Gómez-Moreno C; Medina M; Serrano L
    J Mol Biol; 2006 Oct; 363(2):422-32. PubMed ID: 16978645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-glycoproteins exhibit a positive expression level-evolutionary rate correlation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    J Evol Biol; 2019 Apr; 32(4):390-394. PubMed ID: 30697857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics.
    Jana K; Mehra R; Dehury B; Blundell TL; Kepp KP
    Proteins; 2020 Sep; 88(9):1233-1250. PubMed ID: 32368818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Stability and Avoidance of Toxic Misfolding Do Not Explain the Sequence Constraints of Highly Expressed Proteins.
    Plata G; Vitkup D
    Mol Biol Evol; 2018 Mar; 35(3):700-703. PubMed ID: 29309671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why proteins evolve at different rates: the functional hypothesis versus the mistranslation-induced protein misfolding hypothesis.
    Park D; Choi SS
    FEBS Lett; 2009 Apr; 583(7):1053-9. PubMed ID: 19254718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of foldability and stability in designing real protein sequences.
    Biswas P; Bhattacherjee A
    Phys Chem Chem Phys; 2011 May; 13(20):9223-31. PubMed ID: 21468433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly abundant proteins favor more stable 3D structures in yeast.
    Serohijos AW; Lee SY; Shakhnovich EI
    Biophys J; 2013 Feb; 104(3):L1-3. PubMed ID: 23442924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly.
    Park C; Chen X; Yang JR; Zhang J
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E678-86. PubMed ID: 23382244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.
    Pagan RF; Massey SE
    J Mol Evol; 2014 Feb; 78(2):130-9. PubMed ID: 24362542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase.
    Knies JL; Cai F; Weinreich DM
    Mol Biol Evol; 2017 May; 34(5):1040-1054. PubMed ID: 28087769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection.
    Scalley-Kim M; Baker D
    J Mol Biol; 2004 Apr; 338(3):573-83. PubMed ID: 15081814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.