These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 37399373)
1. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Yun Y; Yoon HJ; Jeong Y; Choi Y; Jang S; Chung KY; Lee HH Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301934120. PubMed ID: 37399373 [TBL] [Abstract][Full Text] [Related]
2. β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells. Haider RS; Matthees ESF; Drube J; Reichel M; Zabel U; Inoue A; Chevigné A; Krasel C; Deupi X; Hoffmann C Nat Commun; 2022 Sep; 13(1):5638. PubMed ID: 36163356 [TBL] [Abstract][Full Text] [Related]
3. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ Cells; 2021 Mar; 10(3):. PubMed ID: 33799570 [No Abstract] [Full Text] [Related]
4. Proximity Labeling to Identify β-Arrestin1 Binding Partners Downstream of Ligand-Activated G Protein-Coupled Receptors. Zhuo Y; Robleto VL; Marchese A Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834700 [TBL] [Abstract][Full Text] [Related]
5. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Shenoy SK; McDonald PH; Kohout TA; Lefkowitz RJ Science; 2001 Nov; 294(5545):1307-13. PubMed ID: 11588219 [TBL] [Abstract][Full Text] [Related]
6. {beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. Girnita L; Shenoy SK; Sehat B; Vasilcanu R; Girnita A; Lefkowitz RJ; Larsson O J Biol Chem; 2005 Jul; 280(26):24412-9. PubMed ID: 15878855 [TBL] [Abstract][Full Text] [Related]
7. Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. Zhang X; Wang F; Chen X; Li J; Xiang B; Zhang YQ; Li BM; Ma L J Neurochem; 2005 Oct; 95(1):169-78. PubMed ID: 16181421 [TBL] [Abstract][Full Text] [Related]
8. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. Burghi V; Paradis JS; Officer A; Adame-Garcia SR; Wu X; Matthees ESF; Barsi-Rhyne B; Ramms DJ; Clubb L; Acosta M; Tamayo P; Bouvier M; Inoue A; von Zastrow M; Hoffmann C; Gutkind JS J Biol Chem; 2023 Nov; 299(11):105293. PubMed ID: 37774973 [TBL] [Abstract][Full Text] [Related]
10. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin. Kahsai AW; Shah KS; Shim PJ; Lee MA; Shreiber BN; Schwalb AM; Zhang X; Kwon HY; Huang LY; Soderblom EJ; Ahn S; Lefkowitz RJ Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2303794120. PubMed ID: 37844230 [TBL] [Abstract][Full Text] [Related]
11. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Shenoy SK; Modi AS; Shukla AK; Xiao K; Berthouze M; Ahn S; Wilkinson KD; Miller WE; Lefkowitz RJ Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6650-5. PubMed ID: 19363159 [TBL] [Abstract][Full Text] [Related]
12. Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. Li X; Baillie GS; Houslay MD J Biol Chem; 2009 Jun; 284(24):16170-16182. PubMed ID: 19372219 [TBL] [Abstract][Full Text] [Related]
13. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes. Chaturvedi M; Maharana J; Shukla AK Cell; 2020 Mar; 180(6):1041-1043. PubMed ID: 32169216 [TBL] [Abstract][Full Text] [Related]
14. Beta-arrestin signaling and regulation of transcription. Ma L; Pei G J Cell Sci; 2007 Jan; 120(Pt 2):213-8. PubMed ID: 17215450 [TBL] [Abstract][Full Text] [Related]
15. Acute ethanol exposure reduces serotonin receptor 1A internalization by increasing ubiquitination and degradation of β-arrestin2. Luessen DJ; Sun H; McGinnis MM; Hagstrom M; Marrs G; McCool BA; Chen R J Biol Chem; 2019 Sep; 294(38):14068-14080. PubMed ID: 31366729 [TBL] [Abstract][Full Text] [Related]
16. Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. Wang P; Gao H; Ni Y; Wang B; Wu Y; Ji L; Qin L; Ma L; Pei G J Biol Chem; 2003 Feb; 278(8):6363-70. PubMed ID: 12488444 [TBL] [Abstract][Full Text] [Related]
17. β-arrestins and G protein-coupled receptor trafficking. Tian X; Kang DS; Benovic JL Handb Exp Pharmacol; 2014; 219():173-86. PubMed ID: 24292830 [TBL] [Abstract][Full Text] [Related]
18. β-arrestin1 is an E3 ubiquitin ligase adaptor for substrate linear polyubiquitination. McElrath CJ; Benzow S; Zhuo Y; Marchese A J Biol Chem; 2023 Dec; 299(12):105474. PubMed ID: 37981209 [TBL] [Abstract][Full Text] [Related]
19. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Janetzko J; Kise R; Barsi-Rhyne B; Siepe DH; Heydenreich FM; Kawakami K; Masureel M; Maeda S; Garcia KC; von Zastrow M; Inoue A; Kobilka BK Cell; 2022 Nov; 185(24):4560-4573.e19. PubMed ID: 36368322 [TBL] [Abstract][Full Text] [Related]
20. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. Shenoy SK; Lefkowitz RJ J Biol Chem; 2003 Apr; 278(16):14498-506. PubMed ID: 12574160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]