These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37399415)

  • 1. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions.
    Batista BC; Morris AZ; Steinbock O
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305172120. PubMed ID: 37399415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral precipitation patterns in confined chemical gardens.
    Haudin F; Cartwright JH; Brau F; De Wit A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17363-7. PubMed ID: 25385581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonclassical Crystallization Causes Dendritic and Band-Like Microscale Patterns in Inorganic Precipitates.
    Nogueira JA; Batista BC; Cooper MA; Steinbock O
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202306885. PubMed ID: 37463849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genericity of confined chemical garden patterns with regard to changes in the reactants.
    Haudin F; Brasiliense V; Cartwright JH; Brau F; De Wit A
    Phys Chem Chem Phys; 2015 May; 17(19):12804-11. PubMed ID: 25908388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archimedean Spirals Form at Low Flow Rates in Confined Chemical Gardens.
    Rocha LAM; Thorne L; Wong JJ; Cartwright JHE; Cardoso SSS
    Langmuir; 2022 May; 38(21):6700-6710. PubMed ID: 35593590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coiling of Secondary Tubes Formed from the Colloidal Exhaust of Primary Chemical Gardens.
    Siev EA; Batista BC; Steinbock O
    J Phys Chem B; 2024 Feb; 128(8):2028-2036. PubMed ID: 38378455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry.
    Ding Y; Gutiérrez-Ariza CM; Zheng M; Felgate A; Lawes A; Sainz-Díaz CI; Cartwright JHE; Cardoso SSS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17841-17851. PubMed ID: 35851594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filament dynamics in vertical confined chemical gardens.
    Rocha LAM; Cartwright JHE; Cardoso SSS
    Chaos; 2022 May; 32(5):053107. PubMed ID: 35649986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Evolution of Precipitate Membranes in Flow Systems.
    Nogueira JA; Batista BC; Cooper MA; Steinbock O
    J Phys Chem B; 2023 Feb; 127(6):1471-1478. PubMed ID: 36745753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Evaluation of Chemical Garden Growth Techniques.
    Aslanbay Guler B; Demirel Z; Imamoglu E
    Langmuir; 2023 Sep; 39(38):13611-13619. PubMed ID: 37712591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern of a confined chemical garden controlled by injection speed.
    Wagatsuma S; Higashi T; Sumino Y; Achiwa A
    Phys Rev E; 2017 May; 95(5-1):052220. PubMed ID: 28618586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-Field-Manipulated Growth of Flow-Driven Precipitate Membrane Tubes.
    Takács D; Schuszter G; Sebők D; Kukovecz Á; Horváth D; Tóth Á
    Chemistry; 2019 Nov; 25(65):14826-14833. PubMed ID: 31400030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants.
    Spanoudaki D; Brau F; De Wit A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1684-1693. PubMed ID: 33416815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confined direct and reverse chemical gardens: Influence of local flow velocity on precipitation patterns.
    Ziemecka I; Brau F; De Wit A
    Chaos; 2020 Jan; 30(1):013140. PubMed ID: 32013509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems.
    Barge LM; Abedian Y; Doloboff IJ; Nuñez JE; Russell MJ; Kidd RD; Kanik I
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-Induced Precipitation in Thin Capillaries Creates Helices, Lamellae, and Tubes.
    Knoll P; Gonzalez AV; McQueen ZC; Steinbock O
    Chemistry; 2019 Nov; 25(61):13885-13889. PubMed ID: 31469925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic labyrinth self-assembled by a chemical garden.
    Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE
    Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices.
    Wang Q; Steinbock O
    Langmuir; 2021 Feb; 37(7):2485-2493. PubMed ID: 33555186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure Controlled Chemical Gardens.
    Bentley MR; Batista BC; Steinbock O
    J Phys Chem A; 2016 Jun; 120(25):4294-301. PubMed ID: 27266993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.