These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37399652)

  • 1. The role of lipid oxidation on electrical properties of planar lipid bilayers and its importance for understanding electroporation.
    Balantič K; Weiss VU; Pittenauer E; Miklavčič D; Kramar P
    Bioelectrochemistry; 2023 Oct; 153():108498. PubMed ID: 37399652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the cholesterol on electroporation of planar lipid bilayer.
    Kramar P; Miklavčič D
    Bioelectrochemistry; 2022 Apr; 144():108004. PubMed ID: 34864271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System for measuring planar lipid bilayer properties.
    Polak A; Mulej B; Kramar P
    J Membr Biol; 2012 Oct; 245(10):625-32. PubMed ID: 22811282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers.
    Velikonja A; Kramar P; Miklavčič D; Maček Lebar A
    Bioelectrochemistry; 2016 Dec; 112():132-7. PubMed ID: 26948707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the lipid bilayer breakdown voltage by means of linear rising signal.
    Kramar P; Miklavcic D; Lebar AM
    Bioelectrochemistry; 2007 Jan; 70(1):23-7. PubMed ID: 16713748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study.
    Rems L; Viano M; Kasimova MA; Miklavčič D; Tarek M
    Bioelectrochemistry; 2019 Feb; 125():46-57. PubMed ID: 30265863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular excitability and ns-pulsed electric fields: Potential involvement of lipid oxidation in the action potential activation.
    Rems L; Rainot A; Wiczew D; Szulc N; Tarek M
    Bioelectrochemistry; 2024 Feb; 155():108588. PubMed ID: 37879163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of gramicidin on electroporation of lipid bilayers.
    Troiano GC; Stebe KJ; Raphael RM; Tung L
    Biophys J; 1999 Jun; 76(6):3150-7. PubMed ID: 10354439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A system for the determination of planar lipid bilayer breakdown voltage and its applications.
    Kramar P; Miklavcic D; Lebar AM
    IEEE Trans Nanobioscience; 2009 Jun; 8(2):132-8. PubMed ID: 19457754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior.
    Runas KA; Acharya SJ; Schmidt JJ; Malmstadt N
    Langmuir; 2016 Jan; 32(3):779-86. PubMed ID: 26704691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple conductance states of lipid pores during Voltage-Clamp electroporation.
    Gurunian A; Dean DA
    Bioelectrochemistry; 2023 Jun; 151():108396. PubMed ID: 36805203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxidation on POPC lipid bilayers: anionic carboxyl group plays a major role.
    Bagheri B; Boonnoy P; Wong-Ekkabut J; Karttunen M
    Phys Chem Chem Phys; 2023 Jul; 25(27):18310-18321. PubMed ID: 37401178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.
    Lebar AM; Troiano GC; Tung L; Miklavcic D
    IEEE Trans Nanobioscience; 2002 Sep; 1(3):116-20. PubMed ID: 16696301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium ion effect on phospholipid bilayers as cell membrane analogues.
    Balantič K; Weiss VU; Allmaier G; Kramar P
    Bioelectrochemistry; 2022 Feb; 143():107988. PubMed ID: 34763170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations.
    Polak A; Bonhenry D; Dehez F; Kramar P; Miklavčič D; Tarek M
    J Membr Biol; 2013 Nov; 246(11):843-50. PubMed ID: 23780415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers.
    Troiano GC; Tung L; Sharma V; Stebe KJ
    Biophys J; 1998 Aug; 75(2):880-8. PubMed ID: 9675188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.