These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37399747)

  • 1. Leidenfrost droplet jet engine by bubble ejection.
    Lin Y; Wu X; Hu Z; Chu F
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):112-120. PubMed ID: 37399747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface.
    Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y
    Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drop impact on superheated surfaces.
    Tran T; Staat HJ; Prosperetti A; Sun C; Lohse D
    Phys Rev Lett; 2012 Jan; 108(3):036101. PubMed ID: 22400761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
    Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y
    J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Behavior of Droplet Impact on Laminar Superheated Particles.
    Jiao Y; Hu X; Zhu Y; Guo Y; Ji J; Du Y; Wang J; Liu X; Wang W; Liu K
    Langmuir; 2023 Aug; 39(33):11925-11933. PubMed ID: 37566515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature.
    Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L
    ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced droplet control by transition boiling.
    Grounds A; Still R; Takashina K
    Sci Rep; 2012; 2():720. PubMed ID: 23056912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-propelled Leidenfrost droplets on a heated glycerol pool.
    Matsumoto R; Hasegawa K
    Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime.
    Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y
    Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nanoscale Leidenfrost effect.
    Rodrigues J; Desai S
    Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boiling Transitions During Droplet Contact on Superheated Nano/Micro-Structured Surfaces.
    Saneie N; Kulkarni V; Fezzaa K; Patankar NA; Anand S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15774-15783. PubMed ID: 35343695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.
    Vakarelski IU; Patankar NA; Marston JO; Chan DY; Thoroddsen ST
    Nature; 2012 Sep; 489(7415):274-7. PubMed ID: 22972299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Final fate of a Leidenfrost droplet: Explosion or takeoff.
    Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C
    Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamics of Leidenfrost droplets in one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.