These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37399786)

  • 1. Gauge-Invariant Excited-State Linear and Quadratic Response Properties within the Meta-Generalized Gradient Approximation.
    Grotjahn R; Furche F
    J Chem Theory Comput; 2023 Aug; 19(15):4897-4911. PubMed ID: 37399786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the meta-generalized gradient approximation for time-dependent density functional theory.
    Bates JE; Furche F
    J Chem Phys; 2012 Oct; 137(16):164105. PubMed ID: 23126693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of imposing gauge invariance in time-dependent density functional theory calculations with meta-generalized gradient approximations.
    Grotjahn R; Furche F; Kaupp M
    J Chem Phys; 2022 Sep; 157(11):111102. PubMed ID: 36137777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Current Dependence of Tau-Dependent Exchange-Correlation Functionals on Nuclear Shielding Calculations.
    Schattenberg CJ; Kaupp M
    J Chem Theory Comput; 2021 Mar; 17(3):1469-1479. PubMed ID: 33629849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Local Hybrid Functionals for Excited States: Structures, Fluorescence, Phosphorescence, and Vibronic Spectra.
    Grotjahn R; Kaupp M
    J Chem Theory Comput; 2020 Sep; 16(9):5821-5834. PubMed ID: 32698580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
    Furness JW; Verbeke J; Tellgren EI; Stopkowicz S; Ekström U; Helgaker T; Teale AM
    J Chem Theory Comput; 2015 Sep; 11(9):4169-81. PubMed ID: 26575912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking the performance of time-dependent density functional methods.
    Leang SS; Zahariev F; Gordon MS
    J Chem Phys; 2012 Mar; 136(10):104101. PubMed ID: 22423822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Treatment of Local Meta-generalized Gradient Density Functionals via Auxiliary Density Expansion: The Density Fitting J + X Approximation.
    Bienvenu AV; Knizia G
    J Chem Theory Comput; 2018 Mar; 14(3):1297-1303. PubMed ID: 29298064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonempirical construction of current-density functionals from conventional density-functional approximations.
    Tao J; Perdew JP
    Phys Rev Lett; 2005 Nov; 95(19):196403. PubMed ID: 16384002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties.
    Holzer C; Franzke YJ; Kehry M
    J Chem Theory Comput; 2021 May; 17(5):2928-2947. PubMed ID: 33914504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadratic Response Properties from TDDFT: Trials and Tribulations.
    Parker SM; Rappoport D; Furche F
    J Chem Theory Comput; 2018 Feb; 14(2):807-819. PubMed ID: 29232511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds.
    Zhang W; Truhlar DG; Tang M
    J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments.
    Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.
    Womack JC; Mardirossian N; Head-Gordon M; Skylaris CK
    J Chem Phys; 2016 Nov; 145(20):204114. PubMed ID: 27908114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the current density on paramagnetic NMR properties.
    Franzke YJ; Holzer C
    J Chem Phys; 2022 Jul; 157(3):031102. PubMed ID: 35868928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals.
    Zahariev F; Leang SS; Gordon MS
    J Chem Phys; 2013 Jun; 138(24):244108. PubMed ID: 23822228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation.
    Mohammadpour M; Jamshidi Z
    J Chem Phys; 2016 May; 144(19):194302. PubMed ID: 27208944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals.
    Imamura Y; Otsuka T; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2067-74. PubMed ID: 17436256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.