These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37399976)
1. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea. Li B; Liang J; Phillips MA; Michael AJ J Biol Chem; 2023 Aug; 299(8):105005. PubMed ID: 37399976 [TBL] [Abstract][Full Text] [Related]
2. Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme. Giles TN; Graham DE J Biol Chem; 2008 Sep; 283(38):25829-38. PubMed ID: 18650422 [TBL] [Abstract][Full Text] [Related]
3. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses. Upadhyay RK; Shao J; Mattoo AK Planta; 2021 Oct; 254(5):108. PubMed ID: 34694486 [TBL] [Abstract][Full Text] [Related]
4. Functional polyamine metabolic enzymes and pathways encoded by the virosphere. Li B; Liang J; Baniasadi HR; Phillips MA; Michael AJ Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2214165120. PubMed ID: 36802435 [TBL] [Abstract][Full Text] [Related]
5. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220 [TBL] [Abstract][Full Text] [Related]
6. Regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in a polyamine auxotrophic cell line. Svensson F; Persson L Mol Cell Biochem; 1996 Sep; 162(2):113-9. PubMed ID: 8905633 [TBL] [Abstract][Full Text] [Related]
7. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. Li B; Liang J; Hanfrey CC; Phillips MA; Michael AJ J Biol Chem; 2021 Oct; 297(4):101219. PubMed ID: 34560100 [TBL] [Abstract][Full Text] [Related]
8. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells. Holm I; Persson L; Pegg AE; Heby O Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206 [TBL] [Abstract][Full Text] [Related]
9. S-Adenosylmethionine decarboxylase from the archaeon Methanococcus jannaschii: identification of a novel family of pyruvoyl enzymes. Kim AD; Graham DE; Seeholzer SH; Markham GD J Bacteriol; 2000 Dec; 182(23):6667-72. PubMed ID: 11073910 [TBL] [Abstract][Full Text] [Related]
10. A polyamine-independent role for Li B; Kurihara S; Kim SH; Liang J; Michael AJ Biochem J; 2019 Sep; 476(18):2579-2594. PubMed ID: 31467246 [TBL] [Abstract][Full Text] [Related]
11. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Shantz LM; Pegg AE Int J Biochem Cell Biol; 1999 Jan; 31(1):107-22. PubMed ID: 10216947 [TBL] [Abstract][Full Text] [Related]
12. Combined regulation of ornithine and S-adenosylmethionine decarboxylases by spermine and the spermine analogue N1 N12-bis(ethyl)spermine. Porter CW; Pegg AE; Ganis B; Madhabala R; Bergeron RJ Biochem J; 1990 May; 268(1):207-12. PubMed ID: 2344358 [TBL] [Abstract][Full Text] [Related]
13. Decarboxylases for polyamine biosynthesis in Drosophila melanogaster larvae. Byus CV; Herbst EJ Biochem J; 1976 Jan; 154(1):31-3. PubMed ID: 819011 [TBL] [Abstract][Full Text] [Related]
14. RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Xiao Y; McCloskey DE; Phillips MA Eukaryot Cell; 2009 May; 8(5):747-55. PubMed ID: 19304951 [TBL] [Abstract][Full Text] [Related]