BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 37400513)

  • 1. The plant nuclear lamina disassembles to regulate genome folding in stress conditions.
    Wang N; Wang Z; Tzourtzou S; Wang X; Bi X; Leimeister J; Xu L; Sakamoto T; Matsunaga S; Schaller A; Jiang H; Liu C
    Nat Plants; 2023 Jul; 9(7):1081-1093. PubMed ID: 37400513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Nuclear Lamina.
    Wong X; Melendez-Perez AJ; Reddy KL
    Cold Spring Harb Perspect Biol; 2022 Feb; 14(2):. PubMed ID: 34400553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity.
    Tang Y; Dong Q; Wang T; Gong L; Gu Y
    Dev Cell; 2022 Jan; 57(1):19-31.e6. PubMed ID: 34822788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial chromatin organization and gene regulation at the nuclear lamina.
    Guerreiro I; Kind J
    Curr Opin Genet Dev; 2019 Apr; 55():19-25. PubMed ID: 31112905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery.
    Hu B; Wang N; Bi X; Karaaslan ES; Weber AL; Zhu W; Berendzen KW; Liu C
    Genome Biol; 2019 Apr; 20(1):87. PubMed ID: 31039799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To be or not be (in the LAD): emerging roles of lamin proteins in transcriptional regulation.
    Nazer E
    Biochem Soc Trans; 2022 Apr; 50(2):1035-1044. PubMed ID: 35437578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to Regulate Nuclear Size.
    Mikulski P; Hohenstatt ML; Farrona S; Smaczniak C; Stahl Y; Kalyanikrishna ; Kaufmann K; Angenent G; Schubert D
    Plant Cell; 2019 May; 31(5):1141-1154. PubMed ID: 30914470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear lamins: key regulators of nuclear structure and activities.
    Prokocimer M; Davidovich M; Nissim-Rafinia M; Wiesel-Motiuk N; Bar DZ; Barkan R; Meshorer E; Gruenbaum Y
    J Cell Mol Med; 2009 Jun; 13(6):1059-85. PubMed ID: 19210577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort.
    Wang N; Karaaslan ES; Faiss N; Berendzen KW; Liu C
    Front Plant Sci; 2021; 12():670306. PubMed ID: 34025705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear lamina CRWN proteins regulate chromatin organization, gene expression, and nuclear body formation in plants.
    Sakamoto Y
    J Plant Res; 2020 Jul; 133(4):457-462. PubMed ID: 32232600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression.
    Collas P; Lund EG; Oldenburg AR
    Bioessays; 2014 Jan; 36(1):75-83. PubMed ID: 24272858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy.
    Prokocimer M; Margalit A; Gruenbaum Y
    J Struct Biol; 2006 Aug; 155(2):351-60. PubMed ID: 16697219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold, mechanics and functions of nuclear lamins.
    Buxboim A; Kronenberg-Tenga R; Salajkova S; Avidan N; Shahak H; Thurston A; Medalia O
    FEBS Lett; 2023 Nov; 597(22):2791-2805. PubMed ID: 37813648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choreography of lamina-associated domains: structure meets dynamics.
    Alagna NS; Thomas TI; Wilson KL; Reddy KL
    FEBS Lett; 2023 Nov; 597(22):2806-2822. PubMed ID: 37953467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear lamina at the crossroads of the cytoplasm and nucleus.
    Gerace L; Huber MD
    J Struct Biol; 2012 Jan; 177(1):24-31. PubMed ID: 22126840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamina-associated domains: peripheral matters and internal affairs.
    Briand N; Collas P
    Genome Biol; 2020 Apr; 21(1):85. PubMed ID: 32241294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells.
    Amendola M; van Steensel B
    EMBO Rep; 2015 May; 16(5):610-7. PubMed ID: 25784758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex effects of laminopathy mutations on nuclear structure and function.
    Ho R; Hegele RA
    Clin Genet; 2019 Feb; 95(2):199-209. PubMed ID: 30280378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subnuclear gene positioning through lamina association affects copper tolerance.
    Sakamoto Y; Sato M; Sato Y; Harada A; Suzuki T; Goto C; Tamura K; Toyooka K; Kimura H; Ohkawa Y; Hara-Nishimura I; Takagi S; Matsunaga S
    Nat Commun; 2020 Nov; 11(1):5914. PubMed ID: 33219233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.