BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37400521)

  • 1. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning.
    Wessels HH; Stirn A; Méndez-Mancilla A; Kim EJ; Hart SK; Knowles DA; Sanjana NE
    Nat Biotechnol; 2024 Apr; 42(4):628-637. PubMed ID: 37400521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.
    Zhang C; Konermann S; Brideau NJ; Lotfy P; Wu X; Novick SJ; Strutzenberg T; Griffin PR; Hsu PD; Lyumkis D
    Cell; 2018 Sep; 175(1):212-223.e17. PubMed ID: 30241607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of CRISPR-Cas9 off-target activities with mismatches and indels based on hybrid neural network.
    Yang Y; Li J; Zou Q; Ruan Y; Feng H
    Comput Struct Biotechnol J; 2023; 21():5039-5048. PubMed ID: 37867973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting.
    Wei J; Lotfy P; Faizi K; Baungaard S; Gibson E; Wang E; Slabodkin H; Kinnaman E; Chandrasekaran S; Kitano H; Durrant MG; Duffy CV; Pawluk A; Hsu PD; Konermann S
    Cell Syst; 2023 Dec; 14(12):1087-1102.e13. PubMed ID: 38091991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches.
    Cheng X; Li Z; Shan R; Li Z; Wang S; Zhao W; Zhang H; Chao L; Peng J; Fei T; Li W
    Nat Commun; 2023 Feb; 14(1):752. PubMed ID: 36765063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively Parallel Profiling of RNA-targeting CRISPR-Cas13d.
    Kuo HC; Prupes J; Chou CW; Finkelstein IJ
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cas13d: A New Molecular Scissor for Transcriptome Engineering.
    Gupta R; Ghosh A; Chakravarti R; Singh R; Ravichandiran V; Swarnakar S; Ghosh D
    Front Cell Dev Biol; 2022; 10():866800. PubMed ID: 35433685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas13d-Mediated Microbial RNA Knockdown.
    Zhang K; Zhang Z; Kang J; Chen J; Liu J; Gao N; Fan L; Zheng P; Wang Y; Sun J
    Front Bioeng Biotechnol; 2020; 8():856. PubMed ID: 32850723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-base tiled screen unveils design principles of PspCas13b for potent and off-target-free RNA silencing.
    Hu W; Kumar A; Ahmed SF; Qi S; Ma DKG; Chen H; Singh GJ; Casan JML; Haber M; Voskoboinik I; McKay MR; Trapani JA; Ekert PG; Fareh M
    Nat Struct Mol Biol; 2024 Jul; ():. PubMed ID: 38951623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective use of sequence information to predict CRISPR-Cas9 off-target.
    Zhang ZR; Jiang ZR
    Comput Struct Biotechnol J; 2022; 20():650-661. PubMed ID: 35140885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and reversible Cas13d-mediated knockdown with an all-in-one lentivirus-vector.
    Lv S; Zhao X; Ma X; Zou Q; Li N; Yan Y; Sun L; Song T
    Front Bioeng Biotechnol; 2022; 10():960192. PubMed ID: 36185457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites.
    Cradick TJ; Qiu P; Lee CM; Fine EJ; Bao G
    Mol Ther Nucleic Acids; 2014 Dec; 3(12):e214. PubMed ID: 25462530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low copy CRISPR-Cas13d mitigates collateral RNA cleavage.
    Hart SK; Wessels HH; Méndez-Mancilla A; Müller S; Drabavicius G; Choi O; Sanjana NE
    bioRxiv; 2024 May; ():. PubMed ID: 38798586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks.
    Zhang G; Zeng T; Dai Z; Dai X
    Comput Struct Biotechnol J; 2021; 19():1445-1457. PubMed ID: 33841753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network.
    Vinodkumar PK; Ozcinar C; Anbarjafari G
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34069050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing.
    Zhang X; Wang X; Lv J; Huang H; Wang J; Zhuo M; Tan Z; Huang G; Liu J; Liu Y; Li M; Lin Q; Li L; Ma S; Huang T; Lin Y; Zhao X; Rong Z
    Genome Biol; 2023 Jun; 24(1):145. PubMed ID: 37353840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.