These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37401588)

  • 21. Construction of an engineered biocatalyst system for the production of medium-chain α,ω-dicarboxylic acids from medium-chain ω-hydroxycarboxylic acids.
    Kim TH; Kang SH; Park JB; Oh DK
    Biotechnol Bioeng; 2020 Sep; 117(9):2648-2657. PubMed ID: 32436987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial organization of multi-enzyme biocatalytic cascades.
    Quin MB; Wallin KK; Zhang G; Schmidt-Dannert C
    Org Biomol Chem; 2017 May; 15(20):4260-4271. PubMed ID: 28374039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Access to Medium-Chain α,ω-Dicarboxylic Acids by Using a Baeyer-Villiger Monooxygenase of Abnormal Regioselectivity.
    Yu JM; Liu YY; Zheng YC; Li H; Zhang XY; Zheng GW; Li CX; Bai YP; Xu JH
    Chembiochem; 2018 Oct; 19(19):2049-2054. PubMed ID: 30025196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Enzymatic Synthesis of D-Amino Acids.
    Pollegioni L; Rosini E; Molla G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32369969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The limits to biocatalysis: pushing the envelope.
    Sheldon RA; Brady D
    Chem Commun (Camb); 2018 Jun; 54(48):6088-6104. PubMed ID: 29770379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tools and strategies for constructing cell-free enzyme pathways.
    Petroll K; Kopp D; Care A; Bergquist PL; Sunna A
    Biotechnol Adv; 2019; 37(1):91-108. PubMed ID: 30521853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trends and innovations in industrial biocatalysis for the production of fine chemicals.
    Panke S; Held M; Wubbolts M
    Curr Opin Biotechnol; 2004 Aug; 15(4):272-9. PubMed ID: 15357999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction and evaluation of a novel bifunctional phenylalanine-formate dehydrogenase fusion protein for bienzyme system with cofactor regeneration.
    Jiang W; Fang BS
    J Ind Microbiol Biotechnol; 2016 May; 43(5):577-84. PubMed ID: 26819086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cofactor Regeneration Using Permeabilized
    Rho HS; Choi K
    J Microbiol Biotechnol; 2018 Aug; 28(8):1346-1351. PubMed ID: 29943553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly enantioselective phase-transfer-catalyzed alkylation of protected alpha-amino acid amides toward practical asymmetric synthesis of vicinal diamines, alpha-amino ketones, and alpha-amino alcohols.
    Ooi T; Takeuchi M; Kato D; Uematsu Y; Tayama E; Sakai D; Maruoka K
    J Am Chem Soc; 2005 Apr; 127(14):5073-83. PubMed ID: 15810842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Useful Applications of Enantioselective (4 + 2)-Cycloaddition Reactions to the Synthesis of Chiral 1,2-Amino Alcohols, 1,2-Diamines, and β-Amino Acids.
    Mahender Reddy K; Thirupathi B; Corey EJ
    Org Lett; 2017 Sep; 19(18):4956-4959. PubMed ID: 28858513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Trends in Enzyme Immobilization-Concepts for Expanding the Biocatalysis Toolbox.
    Federsel HJ; Moody TS; Taylor SJC
    Molecules; 2021 May; 26(9):. PubMed ID: 34068706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole-cell based synthetic enzyme cascades-light and shadow of a promising technology.
    Rudroff F
    Curr Opin Chem Biol; 2019 Apr; 49():84-90. PubMed ID: 30458384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of enantiopure 1,4-dioxanes, morpholines, and piperazines from the reaction of chiral 1,2-diols, amino alcohols, and diamines with vinyl selenones.
    Bagnoli L; Scarponi C; Rossi MG; Testaferri L; Tiecco M
    Chemistry; 2011 Jan; 17(3):993-9. PubMed ID: 21226117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimisation of enzyme cascades for chiral amino alcohol synthesis in aid of host cell integration using a statistical experimental design approach.
    Villegas-Torres MF; Ward JM; Baganz F
    J Biotechnol; 2018 Sep; 281():150-160. PubMed ID: 30009844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic routes to lipidic diamines and amino alcohols: a class of potential antiinflammatory agents.
    Kokotos G; Constantinou-Kokotou V; Noula C; Hadjipavlou-Litina D
    Lipids; 1999 Mar; 34(3):307-11. PubMed ID: 10230726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coenzyme Binding Site Analysis of an Isopropanol Dehydrogenase with Wide Substrate Spectrum and Excellent Organic Solvent Tolerance.
    Jiang W; Fang BS
    Appl Biochem Biotechnol; 2020 Jan; 190(1):18-29. PubMed ID: 31301008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Styrene Oxide Isomerase-Catalyzed Meinwald Rearrangement in Cascade Biotransformations: Synthesis of Chiral and/or Natural Chemicals.
    See WWL; Li Z
    Chemistry; 2023 May; 29(25):e202300102. PubMed ID: 36740917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications.
    Schmidt S; Bornscheuer UT
    Enzymes; 2020; 47():231-281. PubMed ID: 32951825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia.
    Wang F; Zhao J; Li Q; Yang J; Li R; Min J; Yu X; Zheng GW; Yu HL; Zhai C; Acevedo-Rocha CG; Ma L; Li A
    Nat Commun; 2020 Oct; 11(1):5035. PubMed ID: 33028823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.