These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37401592)

  • 61. Yeast as a cell factory: current state and perspectives.
    Kavšček M; Stražar M; Curk T; Natter K; Petrovič U
    Microb Cell Fact; 2015 Jun; 14():94. PubMed ID: 26122609
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.
    Wang J; Lin M; Xu M; Yang ST
    Adv Biochem Eng Biotechnol; 2016; 156():323-361. PubMed ID: 26907554
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.
    Leber C; Da Silva NA
    Biotechnol Bioeng; 2014 Feb; 111(2):347-58. PubMed ID: 23928901
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose.
    Yin H; Hu T; Zhuang Y; Liu T
    Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Yeast Systems Biology: Model Organism and Cell Factory.
    Nielsen J
    Biotechnol J; 2019 Sep; 14(9):e1800421. PubMed ID: 30925027
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization.
    Yu Z; Chang Z; Lu Y; Xiao H
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36869777
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Promising advancement in fermentative succinic acid production by yeast hosts.
    Li C; Ong KL; Cui Z; Sang Z; Li X; Patria RD; Qi Q; Fickers P; Yan J; Lin CSK
    J Hazard Mater; 2021 Jan; 401():123414. PubMed ID: 32763704
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].
    Liu W; Fu J; Zhang B; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1161-72. PubMed ID: 24364352
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites.
    Rahmat E; Kang Y
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4659-4674. PubMed ID: 32270249
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Exploration of yeast biodiversity and development of industrial applications].
    Fan T; Wang M; Li J; Wang F; Zhang Z; Zhao XQ
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):806-815. PubMed ID: 33783151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineering microorganisms for the biosynthesis of dicarboxylic acids.
    Li W; Shen X; Wang J; Sun X; Yuan Q
    Biotechnol Adv; 2021; 48():107710. PubMed ID: 33582180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae.
    Weber N; Hatsch A; Labagnere L; Heider H
    Microb Cell Fact; 2017 Mar; 16(1):51. PubMed ID: 28335772
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Advances in the production of chemicals by organelle compartmentalization in
    Luan T; Yin M; Wang M; Kang X; Zhao J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2334-2358. PubMed ID: 37401597
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M; Matsuyama T
    ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.
    Lane S; Dong J; Jin YS
    Bioresour Technol; 2018 Jul; 260():380-394. PubMed ID: 29655899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae].
    Wang M; Luan T; Zhao J; Li H; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1042-1057. PubMed ID: 33783167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.