These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37401592)

  • 81. Utilization of waste products of dehydrated onion industry for production of fodder yeast by Saccharomyces cerevisiae.
    Ghonaim SA; Abou-Zeid AA; Abd El-Fattah AF; Farid MA
    Zentralbl Bakteriol Naturwiss; 1980; 135(1):82-95. PubMed ID: 6990654
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Yeast synthetic biology for high-value metabolites.
    Dai Z; Liu Y; Guo J; Huang L; Zhang X
    FEMS Yeast Res; 2015 Feb; 15(1):1-11. PubMed ID: 25047863
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.
    Yu T; Zhou YJ; Wenning L; Liu Q; Krivoruchko A; Siewers V; Nielsen J; David F
    Nat Commun; 2017 May; 8():15587. PubMed ID: 28548095
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.
    Lian J; Zhao H
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):437-51. PubMed ID: 25306882
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites.
    Wang G; Kell DB; Borodina I
    Essays Biochem; 2021 Jul; 65(2):277-291. PubMed ID: 34061167
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae.
    Wang Z; Zhang R; Yang Q; Zhang J; Zhao Y; Zheng Y; Yang J
    Adv Appl Microbiol; 2021; 114():1-35. PubMed ID: 33934850
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae.
    van der Hoek SA; Rusnák M; Wang G; Stanchev LD; de Fátima Alves L; Jessop-Fabre MM; Paramasivan K; Jacobsen IH; Sonnenschein N; Martínez JL; Darbani B; Kell DB; Borodina I
    Metab Eng; 2022 Mar; 70():129-142. PubMed ID: 35085780
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Modular Pathway Rewiring of Yeast for Amino Acid Production.
    Liu Q; Yu T; Campbell K; Nielsen J; Chen Y
    Methods Enzymol; 2018; 608():417-439. PubMed ID: 30173772
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae.
    Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals.
    Yan Q; Pfleger BF
    Metab Eng; 2020 Mar; 58():35-46. PubMed ID: 31022535
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effects of organic and inorganic additives on flotation recovery of washed cells of Saccharomyces cerevisiae resuspended in water.
    DeSousa SR; Laluce C; Jafelicci M
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):77-83. PubMed ID: 16500092
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.
    Zhang Y; Nielsen J; Liu Z
    Biotechnol Bioeng; 2018 Sep; 115(9):2139-2147. PubMed ID: 29873064
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions.
    Ding W; Meng Q; Dong G; Qi N; Zhao H; Shi S
    Biotechnol J; 2022 Mar; 17(3):e2100579. PubMed ID: 35086163
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Advances in biosynthesis and downstream processing of diols.
    Liu Y; Zhang C; Zeng AP
    Biotechnol Adv; 2024 Dec; 77():108455. PubMed ID: 39306147
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electrochemical promotion of organic waste fermentation: Research advances and prospects.
    Wang N; Gao M; Liu S; Zhu W; Zhang Y; Wang X; Sun H; Guo Y; Wang Q
    Environ Res; 2024 Mar; 244():117422. PubMed ID: 37866529
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Advances in the biosynthesis of tetraacetyl phytosphingosine, a key substrate of ceramides.
    Zhang X; Zhang X; Lin L; Wang K; Ji XJ
    Synth Syst Biotechnol; 2025; 10(1):1-9. PubMed ID: 39193251
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Multiplex gene editing and regulation techniques based on CRISPR/Cas system].
    Fan X; Wang J; Liang L; Liu R
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2449-2464. PubMed ID: 37401603
    [TBL] [Abstract][Full Text] [Related]  

  • 100. [Advances in biotransformation of methanol into chemicals].
    Liu K; Qiao Y; Zhang S; Guo F; Ma J; Xin F; Zhang W; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2430-2448. PubMed ID: 37401602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.