These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37401612)

  • 21. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging.
    van Soest G; Goderie T; Regar E; Koljenović S; van Leenders GL; Gonzalo N; van Noorden S; Okamura T; Bouma BE; Tearney GJ; Oosterhuis JW; Serruys PW; van der Steen AF
    J Biomed Opt; 2010; 15(1):011105. PubMed ID: 20210431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated diagnosis of optical coherence tomography imaging on plaque vulnerability and its relation to clinical outcomes in coronary artery disease.
    Niioka H; Kume T; Kubo T; Soeda T; Watanabe M; Yamada R; Sakata Y; Miyamoto Y; Wang B; Nagahara H; Miyake J; Akasaka T; Saito Y; Uemura S
    Sci Rep; 2022 Aug; 12(1):14067. PubMed ID: 35982217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI.
    Otto S; Nitsche K; Jung C; Kryvanos A; Zhylka A; Heitkamp K; Gutiérrez-Chico JL; Goebel B; Schulze PC; Figulla HR; Poerner TC
    BMC Cardiovasc Disord; 2017 Apr; 17(1):103. PubMed ID: 28441929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis.
    Prati F; Regar E; Mintz GS; Arbustini E; Di Mario C; Jang IK; Akasaka T; Costa M; Guagliumi G; Grube E; Ozaki Y; Pinto F; Serruys PW;
    Eur Heart J; 2010 Feb; 31(4):401-15. PubMed ID: 19892716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plaque burden influences accurate classification of fibrous cap atheroma by in vivo optical coherence tomography in a porcine model of advanced coronary atherosclerosis.
    Poulsen CB; Pedrigi RM; Pareek N; Kilic ID; Holm NR; Bentzon JF; Bøtker HE; Falk E; Krams R; de Silva R
    EuroIntervention; 2018 Nov; 14(10):1129-1135. PubMed ID: 29616625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
    Zaman RT; Yousefi S; Chibana H; Ikeno F; Long SR; Gambhir SS; Chin FT; McConnell MV; Xing L; Yeung A
    J Nucl Med; 2019 Sep; 60(9):1308-1316. PubMed ID: 30737298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracoronary optical coherence tomography: a review of clinical applications.
    Zivelonghi C; Ghione M; Kilickesmez K; Loureiro RE; Foin N; Lindsay A; de Silva R; Ribichini F; Vassanelli C; Di Mario C
    J Cardiovasc Med (Hagerstown); 2014 Jul; 15(7):543-53. PubMed ID: 24922045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atherosclerotic plaque characterization in Optical Coherence Tomography images.
    Athanasiou LS; Exarchos TP; Naka KK; Michalis LK; Prati F; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4485-8. PubMed ID: 22255335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery.
    Kim S; Lee MW; Kim TS; Song JW; Nam HS; Cho HS; Jang SJ; Ryu J; Oh DJ; Gweon DG; Park SH; Park K; Oh WY; Yoo H; Kim JW
    Eur Heart J; 2016 Oct; 37(37):2833-2844. PubMed ID: 26787442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques.
    Rico-Jimenez JJ; Campos-Delgado DU; Buja LM; Vela D; Jo JA
    Atherosclerosis; 2019 Nov; 290():94-102. PubMed ID: 31604172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Difference of ruptured plaque morphology between asymptomatic coronary artery disease and non-ST elevation acute coronary syndrome patients: an optical coherence tomography study.
    Shimamura K; Ino Y; Kubo T; Nishiguchi T; Tanimoto T; Ozaki Y; Satogami K; Orii M; Shiono Y; Komukai K; Yamano T; Matsuo Y; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Imanishi T; Akasaka T
    Atherosclerosis; 2014 Aug; 235(2):532-7. PubMed ID: 24953494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography.
    Nam HS; Song JW; Jang SJ; Lee JJ; Oh WY; Kim JW; Yoo H
    J Biomed Opt; 2016 Jul; 21(7):75004. PubMed ID: 27391375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of OCT in the Forensic Pathological Diagnosis of Coronary Artery Atherosclerosis and Myocardial Infarction.
    Li Y; Zhang N; Wang CM; He GL
    Fa Yi Xue Za Zhi; 2019 Feb; 35(1):58-62. PubMed ID: 30896121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-aided image analysis algorithm to enhance in vivo diagnosis of plaque erosion by intravascular optical coherence tomography.
    Wang Z; Jia H; Tian J; Soeda T; Vergallo R; Minami Y; Lee H; Aguirre A; Fujimoto JG; Jang IK
    Circ Cardiovasc Imaging; 2014 Sep; 7(5):805-10. PubMed ID: 25034595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo imaging of complicated atherosclerotic plaque - role of optical coherence tomography (OCT).
    Spînu M; Olinic DM; Olinic M; Homorodean C
    Rom J Morphol Embryol; 2018; 59(2):469-478. PubMed ID: 30173250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Coherence Tomography Guidance In The Management Of Acute Coronary Syndrome Based On Plaque Morphology.
    Abbasi WA; Khan HS; Nazir A; Khan HU; Abbasi IA
    J Ayub Med Coll Abbottabad; 2021; 33(1):26-29. PubMed ID: 33774949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early Diagnosis and Treatment of Coronary Heart Disease with Image Features of Optical Coherence Tomography under Adaptive Segmentation Algorithm.
    Lin C
    Comput Math Methods Med; 2022; 2022():1261259. PubMed ID: 35979043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.