BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 37401892)

  • 1. Recent advances in artificial intelligence, mechanistic models, and speed breeding offer exciting opportunities for precise and accelerated genomics-assisted breeding.
    Bhat JA; Feng X; Mir ZA; Raina A; Siddique KHM
    Physiol Plant; 2023; 175(4):e13969. PubMed ID: 37401892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.
    Harfouche AL; Jacobson DA; Kainer D; Romero JC; Harfouche AH; Scarascia Mugnozza G; Moshelion M; Tuskan GA; Keurentjes JJB; Altman A
    Trends Biotechnol; 2019 Nov; 37(11):1217-1235. PubMed ID: 31235329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals.
    Sinha D; Maurya AK; Abdi G; Majeed M; Agarwal R; Mukherjee R; Ganguly S; Aziz R; Bhatia M; Majgaonkar A; Seal S; Das M; Banerjee S; Chowdhury S; Adeyemi SB; Chen JT
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating speed breeding with artificial intelligence for developing climate-smart crops.
    Rai KK
    Mol Biol Rep; 2022 Dec; 49(12):11385-11402. PubMed ID: 35941420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features and applications of haplotypes in crop breeding.
    Bhat JA; Yu D; Bohra A; Ganie SA; Varshney RK
    Commun Biol; 2021 Nov; 4(1):1266. PubMed ID: 34737387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing designer crops for climate resilience through an integrated genomics approach.
    Mohd Saad NS; Neik TX; Thomas WJW; Amas JC; Cantila AY; Craig RJ; Edwards D; Batley J
    Curr Opin Plant Biol; 2022 Jun; 67():102220. PubMed ID: 35489163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-Generation Breeding Strategies for Climate-Ready Crops.
    Razzaq A; Kaur P; Akhter N; Wani SH; Saleem F
    Front Plant Sci; 2021; 12():620420. PubMed ID: 34367194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Markers for Precision Plant Breeding.
    Salgotra RK; Stewart CN
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32640763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated genomic selection for rapid improvement of crops.
    Krishnappa G; Savadi S; Tyagi BS; Singh SK; Mamrutha HM; Kumar S; Mishra CN; Khan H; Gangadhara K; Uday G; Singh G; Singh GP
    Genomics; 2021 May; 113(3):1070-1086. PubMed ID: 33610797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs.
    Yoosefzadeh Najafabadi M; Hesami M; Eskandari M
    Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven approaches to improve water-use efficiency and drought resistance in crop plants.
    Sharma N; Raman H; Wheeler D; Kalenahalli Y; Sharma R
    Plant Sci; 2023 Nov; 336():111852. PubMed ID: 37659733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating multi-omics data for crop improvement.
    Scossa F; Alseekh S; Fernie AR
    J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.