BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37401914)

  • 1. Unexcited Light Source Imaging for Biomedical Applications.
    Ding R; Liu D; Feng Y; Liu H; Ji H; He L; Liu S
    Chemistry; 2023 Sep; 29(51):e202301689. PubMed ID: 37401914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in luminescence-based technologies for drug discovery.
    Baljinnyam B; Ronzetti M; Simeonov A
    Expert Opin Drug Discov; 2023 Jan; 18(1):25-35. PubMed ID: 36562206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROS-responsive probes for low-background optical imaging: a review.
    Xu Y; Yang W; Zhang B
    Biomed Mater; 2021 Feb; 16(2):022002. PubMed ID: 33142272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules.
    Takakura H
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33803935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Illuminating Agents for Deep-Tissue Optical Imaging.
    Li Q; Zeng J; Miao Q; Gao M
    Front Bioeng Biotechnol; 2019; 7():326. PubMed ID: 31799247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy:
    Yan Y; Shi P; Song W; Bi S
    Theranostics; 2019; 9(14):4047-4065. PubMed ID: 31281531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Stokes shift luminescent materials for bio-applications.
    Zhu X; Su Q; Feng W; Li F
    Chem Soc Rev; 2017 Feb; 46(4):1025-1039. PubMed ID: 27966684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging.
    Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity evaluation and selective plane imaging geometry for x-ray-induced luminescence imaging.
    Quigley BP; Smith CD; Cheng SH; Souris JS; Pelizzari CA; Chen CT; Lo LW; Reft CS; Wiersma RD; La Riviere PJ
    Med Phys; 2017 Oct; 44(10):5367-5377. PubMed ID: 28703922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging.
    Huang J; Pu K
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11717-11731. PubMed ID: 32134156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Probes for Autofluorescence-Free Optical Imaging.
    Jiang Y; Pu K
    Chem Rev; 2021 Nov; 121(21):13086-13131. PubMed ID: 34558282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic Afterglow Nanoparticles in Bioapplications.
    Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G
    Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of luminescence probes for biomedical applications.
    Krajnik B; Golacki LW; Fiedorczyk E; Bański M; Noculak A; Hołodnik KM; Podhorodecki A
    Methods Appl Fluoresc; 2021 Jul; 9(4):. PubMed ID: 34198274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategies and applications of smart optical probes in the second near-infrared window.
    Chang B; Chen J; Bao J; Dong K; Chen S; Cheng Z
    Adv Drug Deliv Rev; 2023 Jan; 192():114637. PubMed ID: 36476990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.