BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37402206)

  • 1. Peptide-Functionalized Electrospun Meshes for the Physiological Cultivation of Pulmonary Alveolar Capillary Barrier Models in a 3D-Printed Micro-Bioreactor.
    Jain P; Rauer SB; Felder D; Linkhorst J; Möller M; Wessling M; Singh S
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4878-4892. PubMed ID: 37402206
    [No Abstract]   [Full Text] [Related]  

  • 2. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model.
    Nishiguchi A; Singh S; Wessling M; Kirkpatrick CJ; Möller M
    Biomacromolecules; 2017 Mar; 18(3):719-727. PubMed ID: 28100051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimics.
    Jain P; Nishiguchi A; Linz G; Wessling M; Ludwig A; Rossaint R; Möller M; Singh S
    Adv Biol (Weinh); 2021 Aug; 5(8):e2000427. PubMed ID: 33987968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of biomimetic co-culture and tri-culture models to mimic the complex structure of the alveolar-capillary barrier.
    Licciardello M; Sgarminato V; Ciardelli G; Tonda-Turo C
    Biomater Adv; 2023 Nov; 154():213620. PubMed ID: 37690344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
    Shao Z; Zhang X; Pi Y; Wang X; Jia Z; Zhu J; Dai L; Chen W; Yin L; Chen H; Zhou C; Ao Y
    Biomaterials; 2012 Apr; 33(12):3375-87. PubMed ID: 22322196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation.
    Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J
    Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing properties of scaffolds 3D printed with peptide-polymer conjugates.
    Hammerstone DE; Babuska TF; Lazarte S; Krick BA; Chow LW
    Biomater Adv; 2023 Sep; 152():213498. PubMed ID: 37295132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
    Wu S; Wang Y; Streubel PN; Duan B
    Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures.
    Schmid J; Schwarz S; Meier-Staude R; Sudhop S; Clausen-Schaumann H; Schieker M; Huber R
    Tissue Eng Part C Methods; 2018 Oct; 24(10):585-595. PubMed ID: 30234443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Co- and Triple-Culture Model of the Alveolar-Capillary Barrier on a Basement Membrane Mimic.
    Dohle E; Singh S; Nishigushi A; Fischer T; Wessling M; Möller M; Sader R; Kasper J; Ghanaati S; Kirkpatrick CJ
    Tissue Eng Part C Methods; 2018 Sep; 24(9):495-503. PubMed ID: 30101647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of electrospun fibers of poly(epsilon-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance.
    Klinkhammer K; Bockelmann J; Simitzis C; Brook GA; Grafahrend D; Groll J; Möller M; Mey J; Klee D
    J Mater Sci Mater Med; 2010 Sep; 21(9):2637-51. PubMed ID: 20567886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an
    Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D
    ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hollow Porous Sphere Cell Carrier for the Dynamic Three-Dimensional Cell Culture.
    Gao W; Xiao L; Wang J; Mu Y; Mendhi J; Gao W; Li Z; Yarlagadda P; Wu C; Xiao Y
    Tissue Eng Part C Methods; 2022 Nov; 28(11):610-622. PubMed ID: 36127859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Resorbable 3D-Printed Mesh/Electrospun Nanofibrous Drug/Biomolecule-Eluting Mats for Alveolar Ridge Preservation.
    Chen SY; Lee FY; Wu RC; Chao CE; Lu CJ; Liu SJ
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds.
    Pensa NW; Curry AS; Bonvallet PP; Bellis NF; Rettig KM; Reddy MS; Eberhardt AW; Bellis SL
    Biomater Res; 2019; 23():22. PubMed ID: 31798944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.
    Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS
    Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.