These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37402206)

  • 21. Elucidation of bio-inspired hydroxyapatie crystallization on oxygen-plasma modified 3D printed poly-caprolactone scaffolds.
    Murab S; Gruber SMS; Lin CJ; Whitlock P
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110529. PubMed ID: 32228954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soy Protein Nanofiber Scaffolds for Uniform Maturation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.
    Phelan MA; Kruczek K; Wilson JH; Brooks MJ; Drinnan CT; Regent F; Gerstenhaber JA; Swaroop A; Lelkes PI; Li T
    Tissue Eng Part C Methods; 2020 Aug; 26(8):433-446. PubMed ID: 32635833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contactless mechanical stimulation of tissue engineered constructs: Development and validation of an air-pulse device.
    Marchal-Chaud H; Rieger R; Mai VT; Courtial EJ; Ottenio M; Bonnefont-Rebeix C; Bruyère K; Boulocher C
    Biomater Adv; 2023 Jun; 149():213401. PubMed ID: 37018914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Personalized Volumetric Tissue Generation by Enhancing Multiscale Mass Transport through 3D Printed Scaffolds in Perfused Bioreactors.
    Forrestal DP; Allenby MC; Simpson B; Klein TJ; Woodruff MA
    Adv Healthc Mater; 2022 Dec; 11(24):e2200454. PubMed ID: 35765715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.
    Ravichandran A; Wen F; Lim J; Chong MSK; Chan JKY; Teoh SH
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2039-e2050. PubMed ID: 29314764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system.
    Patel DB; Luthers CR; Lerman MJ; Fisher JP; Jay SM
    Acta Biomater; 2019 Sep; 95():236-244. PubMed ID: 30471476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment.
    Vyas C; Ates G; Aslan E; Hart J; Huang B; Bartolo P
    3D Print Addit Manuf; 2020 Jun; 7(3):105-113. PubMed ID: 32851115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration.
    Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X
    J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro.
    Hermanns MI; Unger RE; Kehe K; Peters K; Kirkpatrick CJ
    Lab Invest; 2004 Jun; 84(6):736-52. PubMed ID: 15077120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels.
    Nalayanda DD; Wang Q; Fulton WB; Wang TH; Abdullah F
    J Pediatr Surg; 2010 Jan; 45(1):45-51. PubMed ID: 20105578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction.
    Kim IG; Wu Y; Park SA; Cho H; Choi JJ; Kwon SK; Shin JW; Chung EJ
    Tissue Eng Part A; 2019 Nov; 25(21-22):1478-1492. PubMed ID: 30799779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving cell seeding efficiency through modification of fiber geometry in 3D printed scaffolds.
    Mainardi VL; Arrigoni C; Bianchi E; Talò G; Delcogliano M; Candrian C; Dubini G; Levi M; Moretti M
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33578401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink.
    Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH
    Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.