BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3740282)

  • 1. Relative flow of blood cells, platelets, and microspheres in outer and inner renal cortex.
    Ofjord ES; Clausen G
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H242-6. PubMed ID: 3740282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrarenal flow of microspheres and red blood cells: skimming in slit and tube models.
    Ofjord ES; Clausen G
    Am J Physiol; 1983 Sep; 245(3):H429-36. PubMed ID: 6614191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skimming of microspheres in vitro: implications for measurement of intrarenal blood flow.
    Ofjord ES; Clausen G; Aukland K
    Am J Physiol; 1981 Sep; 241(3):H342-7. PubMed ID: 7282942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of blood flow in the dog kidney. IV. Reversed net inward postglomerular capillary flow in the cortex after blocking interlobular arteries by 50 mum microspheres.
    Clausen G; Kirkebø A; Tyssebotn I; Ofjord ES; Aukland K
    Acta Physiol Scand; 1981 Dec; 113(4):481-5. PubMed ID: 7348033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of blood flow in the dog kidney. III. Local uptake of 10 mum and 15 mum microspheres during renal vasodilation and constriction.
    Clausen G; Tyssebotn I; Kirkebø A; Ofjord ES; Aukland K
    Acta Physiol Scand; 1981 Dec; 113(4):471-9. PubMed ID: 7348032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrarenal distribution of renal blood flow in the rat.
    Rosivall L; Pósch E; Simon G; László E; Hársing L
    Acta Physiol Acad Sci Hung; 1979; 53(4):389-97. PubMed ID: 317553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of blood flow in the dog kidney. I. Saturation rates for inert diffusible tracers, 125I-iodoantipyrine and tritiated water, versus uptake of microspheres under control conditions.
    Clausen G; Hope A; Kirkebø A; Tyssebotn I; Aukland K
    Acta Physiol Scand; 1979 Sep; 107(1):69-81. PubMed ID: 525370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal blood flow distribution measured by microspheres during isovolemic hematocrit alteration in rats.
    Ackermann U; Veress AT; Sonnenberg H
    Can J Physiol Pharmacol; 1980 Apr; 58(4):368-72. PubMed ID: 7388687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in intrarenal blood flow during sepsis.
    Stone AM; Stein T; LaFortune J; Wise L
    Surg Gynecol Obstet; 1979 May; 148(5):731-4. PubMed ID: 432786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of the renal cortical blood flow in man.
    Ofstad J; Egenberg KE; Hesselberg F; Willassen Y
    Clin Nephrol; 1975; 3(3):94-8. PubMed ID: 1139804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splenic blood flow and blood cell kinetics.
    Peters AM
    Clin Haematol; 1983 Jun; 12(2):421-47. PubMed ID: 6352111
    [No Abstract]   [Full Text] [Related]  

  • 13. A critical analysis of renal blood flow distribution during hemorrhage in dogs.
    Passmore JC; Leffler CW; Neiberger CW
    Circ Shock; 1978; 5(4):327-38. PubMed ID: 752426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrarenal vascular effects of angiotensin I and angiotensin II.
    Britton SL
    Am J Physiol; 1981 Jun; 240(6):H914-9. PubMed ID: 7246753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of steric restriction on the intracortical distribution of microspheres in the dog kidney.
    Morkrid L; Ofstad J; Willassen Y
    Circ Res; 1976 Oct; 39(4):608-15. PubMed ID: 786496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow.
    Jordan A; David T; Homer-Vanniasinkam S; Graham A; Walker P
    Biorheology; 2004; 41(5):641-53. PubMed ID: 15477670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total and regional renal blood flow during complete unilateral ureteral obstruction.
    Wahlberg J; Karlberg L; Persson AE
    Acta Physiol Scand; 1984 Jun; 121(2):111-8. PubMed ID: 6475542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Platelet Margination in Diabetic Blood Flow.
    Chang HY; Yazdani A; Li X; Douglas KAA; Mantzoros CS; Karniadakis GE
    Biophys J; 2018 Oct; 115(7):1371-1382. PubMed ID: 30224049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.
    Gaehtgens P; Dührssen C; Albrecht KH
    Blood Cells; 1980; 6(4):799-817. PubMed ID: 7470632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.