BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37403793)

  • 1. Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization.
    Monteiro P; Yeon B; Wallis SS; Godinho SA
    EMBO J; 2023 Aug; 42(16):e112812. PubMed ID: 37403793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule acetylation promotes kinesin-1 binding and transport.
    Reed NA; Cai D; Blasius TL; Jih GT; Meyhofer E; Gaertig J; Verhey KJ
    Curr Biol; 2006 Nov; 16(21):2166-72. PubMed ID: 17084703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitotic Acetylation of Microtubules Promotes Centrosomal
    Rasamizafy SF; Delsert C; Rabeharivelo G; Cau J; Morin N; van Dijk J
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential modification of the C-terminal tails of different α-tubulins and their importance for microtubule function in vivo.
    Bao M; Dörig RE; Vazquez-Pianzola PM; Beuchle D; Suter B
    Elife; 2023 Jun; 12():. PubMed ID: 37345829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes.
    Young A; Dictenberg JB; Purohit A; Tuft R; Doxsey SJ
    Mol Biol Cell; 2000 Jun; 11(6):2047-56. PubMed ID: 10848628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule acetylation dyshomeostasis in Parkinson's disease.
    Naren P; Samim KS; Tryphena KP; Vora LK; Srivastava S; Singh SB; Khatri DK
    Transl Neurodegener; 2023 May; 12(1):20. PubMed ID: 37150812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility.
    Balabanian L; Berger CL; Hendricks AG
    Biophys J; 2017 Oct; 113(7):1551-1560. PubMed ID: 28978447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between microtubule dynamics and intracellular organization.
    de Forges H; Bouissou A; Perez F
    Int J Biochem Cell Biol; 2012 Feb; 44(2):266-74. PubMed ID: 22108200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinesin-1 variant reveals motor-induced microtubule damage in cells.
    Budaitis BG; Badieyan S; Yue Y; Blasius TL; Reinemann DN; Lang MJ; Cianfrocco MA; Verhey KJ
    Curr Biol; 2022 Jun; 32(11):2416-2429.e6. PubMed ID: 35504282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin-1 Regulates Endocytic Trafficking of Classical Swine Fever Virus along Acetylated Microtubules.
    Lou JX; Liu YY; Bai JS; Cheng Y; Zhang J; Liu CC; Zhou B
    J Virol; 2023 Jan; 97(1):e0192922. PubMed ID: 36602362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
    Howes SC; Alushin GM; Shida T; Nachury MV; Nogales E
    Mol Biol Cell; 2014 Jan; 25(2):257-66. PubMed ID: 24227885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative mapping of dense microtubule arrays in mammalian neurons.
    Katrukha EA; Jurriens D; Salas Pastene DM; Kapitein LC
    Elife; 2021 Jul; 10():. PubMed ID: 34313224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid.
    Ochi T
    Mutat Res; 2002 Jan; 499(1):73-84. PubMed ID: 11804606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons.
    Hammond JW; Huang CF; Kaech S; Jacobson C; Banker G; Verhey KJ
    Mol Biol Cell; 2010 Feb; 21(4):572-83. PubMed ID: 20032309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells.
    Hooikaas PJ; Damstra HG; Gros OJ; van Riel WE; Martin M; Smits YT; van Loosdregt J; Kapitein LC; Berger F; Akhmanova A
    Elife; 2020 Dec; 9():. PubMed ID: 33346730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of kinesin, dynein and microtubules in pancreatic secretion.
    Schnekenburger J; Weber IA; Hahn D; Buchwalow I; Krüger B; Albrecht E; Domschke W; Lerch MM
    Cell Mol Life Sci; 2009 Aug; 66(15):2525-37. PubMed ID: 19488676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.
    Soppina V; Herbstman JF; Skiniotis G; Verhey KJ
    PLoS One; 2012; 7(10):e48204. PubMed ID: 23110214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks.
    Guardia CM; Farías GG; Jia R; Pu J; Bonifacino JS
    Cell Rep; 2016 Nov; 17(8):1950-1961. PubMed ID: 27851960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
    Coombes C; Yamamoto A; McClellan M; Reid TA; Plooster M; Luxton GW; Alper J; Howard J; Gardner MK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7176-E7184. PubMed ID: 27803321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. αTAT1 catalyses microtubule acetylation at clathrin-coated pits.
    Montagnac G; Meas-Yedid V; Irondelle M; Castro-Castro A; Franco M; Shida T; Nachury MV; Benmerah A; Olivo-Marin JC; Chavrier P
    Nature; 2013 Oct; 502(7472):567-70. PubMed ID: 24097348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.