These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37403808)

  • 1. Broadband Photodetectors and Imagers in Stretchable Electronics Packaging.
    Araki T; Li K; Suzuki D; Abe T; Kawabata R; Uemura T; Izumi S; Tsuruta S; Terasaki N; Kawano Y; Sekitani T
    Adv Mater; 2024 May; 36(20):e2304048. PubMed ID: 37403808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraflexible Wireless Imager Integrated with Organic Circuits for Broadband Infrared Thermal Analysis.
    Kawabata R; Li K; Araki T; Akiyama M; Sugimachi K; Matsuoka N; Takahashi N; Sakai D; Matsuzaki Y; Koshimizu R; Yamamoto M; Takai L; Odawara R; Abe T; Izumi S; Kurihira N; Uemura T; Kawano Y; Sekitani T
    Adv Mater; 2024 Apr; 36(15):e2309864. PubMed ID: 38213132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Wrinkling for Flexible and Stretchable Sensors.
    Lee G; Zarei M; Wei Q; Zhu Y; Lee SG
    Small; 2022 Oct; 18(42):e2203491. PubMed ID: 36047645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable, large-area organic electronics.
    Sekitani T; Someya T
    Adv Mater; 2010 May; 22(20):2228-46. PubMed ID: 20229571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics.
    Hua Q; Shen G
    Chem Soc Rev; 2024 Feb; 53(3):1316-1353. PubMed ID: 38196334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot.
    Goldoni R; Ozkan-Aydin Y; Kim YS; Kim J; Zavanelli N; Mahmood M; Liu B; Hammond FL; Goldman DI; Yeo WH
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43388-43397. PubMed ID: 32791828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
    Wu H; Huang Y; Xu F; Duan Y; Yin Z
    Adv Mater; 2016 Dec; 28(45):9881-9919. PubMed ID: 27677428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare.
    Guo J; Zhou B; Zong R; Pan L; Li X; Yu X; Yang C; Kong L; Dai Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33589-33598. PubMed ID: 31464425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity.
    Kim M; Kang P; Leem J; Nam S
    Nanoscale; 2017 Mar; 9(12):4058-4065. PubMed ID: 28116377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Flexible Organic Photodetectors: Materials and Applications.
    Anabestani H; Nabavi S; Bhadra S
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Based Flexible and Stretchable Electronics.
    Jang H; Park YJ; Chen X; Das T; Kim MS; Ahn JH
    Adv Mater; 2016 Jun; 28(22):4184-202. PubMed ID: 26728114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots.
    Chiang CW; Haider G; Tan WC; Liou YR; Lai YC; Ravindranath R; Chang HT; Chen YF
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):466-71. PubMed ID: 26696193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.
    Trung TQ; Lee NE
    Adv Mater; 2016 Jun; 28(22):4338-72. PubMed ID: 26840387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics.
    Ma Z; Huang Q; Xu Q; Zhuang Q; Zhao X; Yang Y; Qiu H; Yang Z; Wang C; Chai Y; Zheng Z
    Nat Mater; 2021 Jun; 20(6):859-868. PubMed ID: 33603185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics.
    Trung TQ; Ramasundaram S; Hwang BU; Lee NE
    Adv Mater; 2016 Jan; 28(3):502-9. PubMed ID: 26607674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Broadband Photodetectors from Infrared to Terahertz.
    Si W; Zhou W; Liu X; Wang K; Liao Y; Yan F; Ji X
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters.
    Noh JS
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.