These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37403987)

  • 21. Brain Tumor Detection Using Machine Learning and Deep Learning: A Review.
    Lotlikar VS; Satpute N; Gupta A
    Curr Med Imaging; 2022; 18(6):604-622. PubMed ID: 34561990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning Algorithms in Neuroimaging: An Overview.
    Stumpo V; Kernbach JM; van Niftrik CHB; Sebök M; Fierstra J; Regli L; Serra C; Staartjes VE
    Acta Neurochir Suppl; 2022; 134():125-138. PubMed ID: 34862537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical machine learning for disease diagnosis.
    Summers HD
    Cell Rep Methods; 2021 Oct; 1(6):100103. PubMed ID: 35474900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos.
    Sharma H; Drukker L; Chatelain P; Droste R; Papageorghiou AT; Noble JA
    Med Image Anal; 2021 Apr; 69():101973. PubMed ID: 33550004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.
    Dhaka VS; Meena SV; Rani G; Sinwar D; Kavita ; Ijaz MF; Woźniak M
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of cell morphology with quantitative phase microscopy and machine learning.
    Li Y; Di J; Wang K; Wang S; Zhao J
    Opt Express; 2020 Aug; 28(16):23916-23927. PubMed ID: 32752380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A graph neural network framework for mapping histological topology in oral mucosal tissue.
    Nair A; Arvidsson H; Gatica V JE; Tudzarovski N; Meinke K; Sugars RV
    BMC Bioinformatics; 2022 Nov; 23(1):506. PubMed ID: 36434526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introduction to Machine Learning for Ophthalmologists.
    Consejo A; Melcer T; Rozema JJ
    Semin Ophthalmol; 2019; 34(1):19-41. PubMed ID: 30500302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning: An Update for Radiologists.
    Cheng PM; Montagnon E; Yamashita R; Pan I; Cadrin-Chênevert A; Perdigón Romero F; Chartrand G; Kadoury S; Tang A
    Radiographics; 2021; 41(5):1427-1445. PubMed ID: 34469211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What machine learning can do for developmental biology.
    Villoutreix P
    Development; 2021 Jan; 148(1):. PubMed ID: 33431591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHOTONAI-A Python API for rapid machine learning model development.
    Leenings R; Winter NR; Plagwitz L; Holstein V; Ernsting J; Sarink K; Fisch L; Steenweg J; Kleine-Vennekate L; Gebker J; Emden D; Grotegerd D; Opel N; Risse B; Jiang X; Dannlowski U; Hahn T
    PLoS One; 2021; 16(7):e0254062. PubMed ID: 34288935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research.
    Wozniak JM; Jain R; Balaprakash P; Ozik J; Collier NT; Bauer J; Xia F; Brettin T; Stevens R; Mohd-Yusof J; Cardona CG; Essen BV; Baughman M
    BMC Bioinformatics; 2018 Dec; 19(Suppl 18):491. PubMed ID: 30577736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks.
    Zhu XL; Shen HB; Sun H; Duan LX; Xu YY
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1303-1311. PubMed ID: 35290645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A data driven methodology for social science research with left-behind children as a case study.
    Wu C; Wang G; Hu S; Liu Y; Mi H; Zhou Y; Guo YK; Song T
    PLoS One; 2020; 15(11):e0242483. PubMed ID: 33216786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overview of Algorithms for Natural Language Processing and Time Series Analyses.
    Feghali J; Jimenez AE; Schilling AT; Azad TD
    Acta Neurochir Suppl; 2022; 134():221-242. PubMed ID: 34862546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.