These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37404172)
1. High-Affinity Extended Bisphosphonate-Based Coordination Polymers as Promising Candidates for Bone-Targeted Drug Delivery. Carmona-Sarabia L; Quiñones Vélez G; Mojica-Vázquez D; Escalera-Joy AM; Esteves-Vega S; Peterson-Peguero EA; López-Mejías V ACS Appl Mater Interfaces; 2023 Jul; 15(28):33397-33412. PubMed ID: 37404172 [TBL] [Abstract][Full Text] [Related]
2. Design of Extended Bisphosphonate-Based Coordination Polymers as Bone-Targeted Drug Delivery Systems for Breast Cancer-Induced Osteolytic Metastasis and Other Bone Therapies. Carmona-Sarabia L; Quiñones Vélez G; Escalera-Joy AM; Mojica-Vázquez D; Esteves-Vega S; Peterson-Peguero EA; López-Mejías V Inorg Chem; 2023 Jun; 62(24):9440-9453. PubMed ID: 37278598 [TBL] [Abstract][Full Text] [Related]
3. Beyond Antiresorptive Activity: Risedronate-Based Coordination Complexes To Potentially Treat Osteolytic Metastases. Vélez GQ; Carmona-Sarabia L; Santiago AP; Figueroa Guzmán AF; Hu C; Peterson-Peguero E; López-Mejías V ACS Appl Bio Mater; 2023 Mar; 6(3):973-986. PubMed ID: 36786674 [TBL] [Abstract][Full Text] [Related]
5. High affinity zoledronate-based metal complex nanocrystals to potentially treat osteolytic metastases. Quiñones Vélez G; Carmona-Sarabia L; Rivera Raíces AA; Hu T; Peterson-Peguero EA; López-Mejías V Mater Adv; 2022 Apr; 3(7):3251-3266. PubMed ID: 35445197 [TBL] [Abstract][Full Text] [Related]
6. Novel Metal-Organic Framework Nanoparticle for Letrozole Delivery: A New Advancement in Breast Cancer Treatment. Hashemi A; Rezaei N; Shirkavand F; Gholizadeh F; Baghbani-Arani F J Pharm Sci; 2024 Aug; 113(8):2245-2257. PubMed ID: 38492847 [TBL] [Abstract][Full Text] [Related]
7. Bisphosphonate-functionalized micelles for targeted delivery of curcumin to metastatic bone cancer. Kamble S; Varamini P; Müllner M; Pelras T; Rohanizadeh R Pharm Dev Technol; 2020 Nov; 25(9):1118-1126. PubMed ID: 32686553 [TBL] [Abstract][Full Text] [Related]
8. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Liu M; Wang B; Guo C; Hou X; Cheng Z; Chen D Drug Deliv; 2019 Dec; 26(1):1002-1016. PubMed ID: 31571501 [TBL] [Abstract][Full Text] [Related]
9. Distinct mechanisms of bisphosphonate action between osteoblasts and breast cancer cells: identity of a potent new bisphosphonate analogue. Reinholz GG; Getz B; Sanders ES; Karpeisky MY; Padyukova NSh; Mikhailov SN; Ingle JN; Spelsberg TC Breast Cancer Res Treat; 2002 Feb; 71(3):257-68. PubMed ID: 12002344 [TBL] [Abstract][Full Text] [Related]
10. The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Hiraga T; Williams PJ; Mundy GR; Yoneda T Cancer Res; 2001 Jun; 61(11):4418-24. PubMed ID: 11389070 [TBL] [Abstract][Full Text] [Related]
11. A conjugate of gemcitabine with bisphosphonate (Gem/BP) shows potential as a targeted bone-specific therapeutic agent in an animal model of human breast cancer bone metastases. El-Mabhouh AA; Nation PN; Abele JT; Riauka T; Postema E; McEwan AJ; Mercer JR Oncol Res; 2011; 19(6):287-95. PubMed ID: 21776824 [TBL] [Abstract][Full Text] [Related]
12. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Haque ST; Islam RA; Gan SH; Chowdhury EH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937817 [No Abstract] [Full Text] [Related]
13. Probenecid as a sensitizer of bisphosphonate-mediated effects in breast cancer cells. Ebert R; Meissner-Weigl J; Zeck S; Määttä J; Auriola S; Coimbra de Sousa S; Mentrup B; Graser S; Rachner TD; Hofbauer LC; Jakob F Mol Cancer; 2014 Dec; 13():265. PubMed ID: 25496233 [TBL] [Abstract][Full Text] [Related]
14. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: a mini-review. Iafisco M; Margiotta N J Inorg Biochem; 2012 Dec; 117():237-47. PubMed ID: 22824154 [TBL] [Abstract][Full Text] [Related]
15. Bisphosphonates for breast cancer. Pavlakis N; Schmidt R; Stockler M Cochrane Database Syst Rev; 2005 Jul; (3):CD003474. PubMed ID: 16034900 [TBL] [Abstract][Full Text] [Related]
16. Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. Lin Y; Villacanas MG; Zou H; Liu H; Carcedo IG; Wu Y; Sun B; Wu X; Prasadam I; Monteiro MJ; Li L; Xu ZP; Gu W ACS Appl Bio Mater; 2021 Mar; 4(3):2490-2501. PubMed ID: 35014367 [TBL] [Abstract][Full Text] [Related]
17. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Hirabayashi H; Fujisaki J Clin Pharmacokinet; 2003; 42(15):1319-30. PubMed ID: 14674786 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo antiresorptive effects of bisphosphonates in metastatic bone disease. Kanakis I; Kousidou OCh; Karamanos NK In Vivo; 2005; 19(1):311-8. PubMed ID: 15796191 [TBL] [Abstract][Full Text] [Related]
19. The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Michigami T; Hiraga T; Williams PJ; Niewolna M; Nishimura R; Mundy GR; Yoneda T Breast Cancer Res Treat; 2002 Oct; 75(3):249-58. PubMed ID: 12353814 [TBL] [Abstract][Full Text] [Related]
20. Dialkyl bisphosphonate platinum(II) complex as a potential drug for metastatic bone tumor. Nakatake H; Ekimoto H; Aso M; Ogawa A; Yamaguchi A; Suemune H Chem Pharm Bull (Tokyo); 2011; 59(6):710-3. PubMed ID: 21628905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]