BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37404184)

  • 21. Structure and mechanism of sulfofructose transaldolase, a key enzyme in sulfoquinovose metabolism.
    Snow AJD; Sharma M; Abayakoon P; Williams SJ; Blaza JN; Davies GJ
    Structure; 2023 Mar; 31(3):244-252.e4. PubMed ID: 36805128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissimilation of the C2 sulfonates.
    Cook AM; Denger K
    Arch Microbiol; 2002 Dec; 179(1):1-6. PubMed ID: 12471498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfoquinovose degraded by pure cultures of bacteria with release of C3-organosulfonates: complete degradation in two-member communities.
    Denger K; Huhn T; Hollemeyer K; Schleheck D; Cook AM
    FEMS Microbiol Lett; 2012 Mar; 328(1):39-45. PubMed ID: 22150877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical Investigation of 3-Sulfopropionaldehyde Reductase HpfD.
    An J; Wei Y; Liu J; Lui Ang E; Zhao H; Zhang Y
    Chembiochem; 2021 Oct; 22(19):2862-2866. PubMed ID: 34410031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sulfoquinovosyl glycerol binding protein SmoF binds and accommodates plant sulfolipids.
    Snow AJD; Sharma M; Lingford JP; Zhang Y; Mui JW; Epa R; Goddard-Borger ED; Williams SJ; Davies GJ
    Curr Res Struct Biol; 2022; 4():51-58. PubMed ID: 35341160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle.
    Roy AB; Hewlins MJ; Ellis AJ; Harwood JL; White GF
    Appl Environ Microbiol; 2003 Nov; 69(11):6434-41. PubMed ID: 14602597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase.
    Denger K; Mayer J; Buhmann M; Weinitschke S; Smits TH; Cook AM
    J Bacteriol; 2009 Sep; 191(18):5648-56. PubMed ID: 19581363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycyl Radical Enzymes and Sulfonate Metabolism in the Microbiome.
    Wei Y; Zhang Y
    Annu Rev Biochem; 2021 Jun; 90():817-846. PubMed ID: 33823652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of chiral sulfonate compound 2,3-dihydroxypropane-1-sulfonate (DHPS) by Roseobacter bacteria in marine environment.
    Chen X; Liu L; Gao X; Dai X; Han Y; Chen Q; Tang K
    Environ Int; 2021 Dec; 157():106829. PubMed ID: 34425483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfonates: novel electron acceptors in anaerobic respiration.
    Lie TJ; Pitta T; Leadbetter ER; Godchaux W; Leadbetter JR
    Arch Microbiol; 1996 Sep; 166(3):204-10. PubMed ID: 8703197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium.
    Xing M; Wei Y; Hua G; Li M; Nanjaraj Urs AN; Wang F; Hu Y; Zhai W; Liu Y; Ang EL; Zhao H; Zhang Y
    Biochem J; 2019 Aug; 476(15):2271-2279. PubMed ID: 31350331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates.
    Weinitschke S; Denger K; Cook AM; Smits THM
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3055-3060. PubMed ID: 17768248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive Synthesis of Substrates, Intermediates, and Products of the Sulfoglycolytic Embden-Meyerhoff-Parnas Pathway.
    Abayakoon P; Epa R; Petricevic M; Bengt C; Mui JW; van der Peet PL; Zhang Y; Lingford JP; White JM; Goddard-Borger ED; Williams SJ
    J Org Chem; 2019 Mar; 84(5):2901-2910. PubMed ID: 30742766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria.
    Sharma M; Lingford JP; Petricevic M; Snow AJD; Zhang Y; Järvå MA; Mui JW; Scott NE; Saunders EC; Mao R; Epa R; da Silva BM; Pires DEV; Ascher DB; McConville MJ; Davies GJ; Williams SJ; Goddard-Borger ED
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35074914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic oxidation of isethionate to sulfoacetaldehyde in bacterial extract.
    Kondo H; Niki H; Takahashi S; Ishimoto M
    J Biochem; 1977 Jun; 81(6):1911-6. PubMed ID: 197072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfoacetate generated by Rhodopseudomonas palustris from taurine.
    Denger K; Weinitschke S; Hollemeyer K; Cook AM
    Arch Microbiol; 2004 Oct; 182(2-3):254-8. PubMed ID: 15340795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium
    Zhou Y; Wei Y; Nanjaraj Urs AN; Lin L; Xu T; Hu Y; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biosci Rep; 2019 Jun; 39(6):. PubMed ID: 31123167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium
    Peck SC; Denger K; Burrichter A; Irwin SM; Balskus EP; Schleheck D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3171-3176. PubMed ID: 30718429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.
    Krejcík Z; Denger K; Weinitschke S; Hollemeyer K; Paces V; Cook AM; Smits TH
    Arch Microbiol; 2008 Aug; 190(2):159-68. PubMed ID: 18506422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental and Intestinal Phylum
    Frommeyer B; Fiedler AW; Oehler SR; Hanson BT; Loy A; Franchini P; Spiteller D; Schleheck D
    iScience; 2020 Sep; 23(9):101510. PubMed ID: 32919372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.