These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37404530)

  • 1. Transcriptome analysis of differential sugar accumulation in the developing embryo of contrasting two
    Huang R; Peng F; Wang D; Cao F; Guo C; Yu L; Zhang J; Yang Y
    Front Plant Sci; 2023; 14():1206585. PubMed ID: 37404530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression analysis of sugar accumulation-related genes during chestnut nut development.
    Zhang C; Chen X; Liu W; Ji Y; Yang Y; Chen J; Li P; Li D
    J Plant Physiol; 2023 Mar; 282():153918. PubMed ID: 36738603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima).
    Zhang L; Lin Q; Feng Y; Fan X; Zou F; Yuan DY; Zeng X; Cao H
    J Agric Food Chem; 2015 Jan; 63(3):929-42. PubMed ID: 25537355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of genes involved in starch biosynthesis in developing Chinese chestnut (Castanea mollissima Blume) seed kernels.
    Shi L; Wang J; Liu Y; Ma C; Guo S; Lin S; Wang J
    Sci Rep; 2021 Feb; 11(1):3570. PubMed ID: 33574357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons.
    Chen L; Lu D; Wang T; Li Z; Zhao Y; Jiang Y; Zhang Q; Cao Q; Fang K; Xing Y; Qin L
    PLoS One; 2017; 12(5):e0177792. PubMed ID: 28542293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional mechanism of differential sugar accumulation in pulp of two contrasting mango (Mangifera indica L.) cultivars.
    Li L; Wu HX; Ma XW; Xu WT; Liang QZ; Zhan RL; Wang SB
    Genomics; 2020 Nov; 112(6):4505-4515. PubMed ID: 32735916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome sequencing and differential expression analysis of seed starch accumulation in Chinese chestnut Metaxenia.
    Li S; Shi Z; Zhu Q; Tao L; Liang W; Zhao Z
    BMC Genomics; 2021 Aug; 22(1):617. PubMed ID: 34388974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomics and Antioxidant Analysis of Two Chinese Chestnut (
    Zhu C; Wang W; Chen Y; Zhao Y; Zhang S; Shi F; Khalil-Ur-Rehman M; Nieuwenhuizen NJ
    Front Plant Sci; 2022; 13():874434. PubMed ID: 35498685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification and characterization of the
    Zhang P; Liu J; Jia N; Wang M; Lu Y; Wang D; Zhang J; Zhang H; Wang X
    Front Plant Sci; 2023; 14():1166717. PubMed ID: 37077628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a SNP-Based High-Density Genetic Map Using Genotyping by Sequencing (GBS) and QTL Analysis of Nut Traits in Chinese Chestnut (
    Ji F; Wei W; Liu Y; Wang G; Zhang Q; Xing Y; Zhang S; Liu Z; Cao Q; Qin L
    Front Plant Sci; 2018; 9():816. PubMed ID: 29963069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Pseudomolecules for the Chinese Chestnut (
    Wang J; Tian S; Sun X; Cheng X; Duan N; Tao J; Shen G
    G3 (Bethesda); 2020 Oct; 10(10):3565-3574. PubMed ID: 32847817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection.
    Barakat A; DiLoreto DS; Zhang Y; Smith C; Baier K; Powell WA; Wheeler N; Sederoff R; Carlson JE
    BMC Plant Biol; 2009 May; 9():51. PubMed ID: 19426529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signatures of Selection in the Genomes of Chinese Chestnut (
    LaBonte NR; Zhao P; Woeste K
    Front Plant Sci; 2018; 9():810. PubMed ID: 29988533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-Amylase and Phosphatidic Acid Involved in Recalcitrant Seed Germination of Chinese Chestnut.
    Liu Y; Zhang Y; Zheng Y; Nie X; Wang Y; Yu W; Su S; Cao Q; Qin L; Xing Y
    Front Plant Sci; 2022; 13():828270. PubMed ID: 35401618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomics Integrated with Changes in Cell Wall Material of Chestnut (
    Chen Y; Zhu C; Zhao Y; Zhang S; Wang W
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the GA-mediated
    Chen G; Li J; Liu Y; Zhang Q; Gao Y; Fang K; Cao Q; Qin L; Xing Y
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.
    Yang Z; Wang T; Wang H; Huang X; Qin Y; Hu G
    J Plant Physiol; 2013 May; 170(8):731-40. PubMed ID: 23499454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence that Chinese chestnut cultivars in Japan are derived from two divergent genetic structures that originated in China.
    Nishio S; Ruan S; Sawamura Y; Terakami S; Takada N; Takeuchi Y; Saito T; Inoue E
    PLoS One; 2020; 15(7):e0235354. PubMed ID: 32609773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Diversity and Population Structure of Chinese Chestnut (
    Jiang X; Fang Z; Lai J; Wu Q; Wu J; Gong B; Wang Y
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.