These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 3740465)
1. Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable microvessels. Coomber BL; Stewart PA Anat Rec; 1986 Jul; 215(3):256-61. PubMed ID: 3740465 [TBL] [Abstract][Full Text] [Related]
2. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructure of the blood-brain barrier in the rabbit. Sedlakova R; Shivers RR; Del Maestro RF J Submicrosc Cytol Pathol; 1999 Jan; 31(1):149-61. PubMed ID: 10363362 [TBL] [Abstract][Full Text] [Related]
4. Induction of pinocytosis in cerebral vessels by acute hypertension and by hyperosmolar solutions. Hansson HA; Johansson BB J Neurosci Res; 1980; 5(3):183-90. PubMed ID: 7401197 [TBL] [Abstract][Full Text] [Related]
5. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. Frøkjaer-Jensen J J Electron Microsc Tech; 1991 Nov; 19(3):291-304. PubMed ID: 1795183 [TBL] [Abstract][Full Text] [Related]
6. Transport pathways for macromolecules in the aortic endothelium: I. Transendothelial channels revealed by three-dimensional reconstruction using serial sections. Ogawa K; Watabe T; Taniguchi K Anat Rec; 1993 Aug; 236(4):653-63. PubMed ID: 7691037 [TBL] [Abstract][Full Text] [Related]
7. Regeneration of cerebral microvessels: a morphologic and histochemical study after local freeze-injury. Cancilla PA; Frommes SP; Kahn LE; DeBault LE Lab Invest; 1979 Jan; 40(1):74-82. PubMed ID: 762954 [TBL] [Abstract][Full Text] [Related]
8. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Hofman P; Blaauwgeers HG; Tolentino MJ; Adamis AP; Nunes Cardozo BJ; Vrensen GF; Schlingemann RO Curr Eye Res; 2000 Aug; 21(2):637-45. PubMed ID: 11148600 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructural and permeability features of microvessels in the periventricular area of senescence-accelerated mice (SAM). Ueno M; Sakamoto H; Kanenishi K; Onodera M; Akiguchi I; Hosokawa M Microsc Res Tech; 2001 May; 53(3):232-8. PubMed ID: 11301499 [TBL] [Abstract][Full Text] [Related]
10. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Dvorak AM; Kohn S; Morgan ES; Fox P; Nagy JA; Dvorak HF J Leukoc Biol; 1996 Jan; 59(1):100-15. PubMed ID: 8558058 [TBL] [Abstract][Full Text] [Related]
11. The importance of cerebral arterioles in alterations of the blood-brain barrier. Petito CK; Levy DE Lab Invest; 1980 Sep; 43(3):262-8. PubMed ID: 7401636 [TBL] [Abstract][Full Text] [Related]
12. Pathways into, through, and around the fluid-brain barriers. Broadwell RD NIDA Res Monogr; 1992; 120():230-58. PubMed ID: 1501688 [TBL] [Abstract][Full Text] [Related]
13. Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Nico B; Frigeri A; Nicchia GP; Corsi P; Ribatti D; Quondamatteo F; Herken R; Girolamo F; Marzullo A; Svelto M; Roncali L Glia; 2003 May; 42(3):235-51. PubMed ID: 12673830 [TBL] [Abstract][Full Text] [Related]
14. Experimental study of WGA binding on the endothelial cell surface in cerebral ischemia. Nishida S; Akai F; Hiruma S; Maeda M; Tanji K; Hashimoto S Histol Histopathol; 1986 Jan; 1(1):69-74. PubMed ID: 2980103 [TBL] [Abstract][Full Text] [Related]
15. Lack of blood-brain barrier properties in microvessels of the prelaminar optic nerve head. Hofman P; Hoyng P; vanderWerf F; Vrensen GF; Schlingemann RO Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):895-901. PubMed ID: 11274064 [TBL] [Abstract][Full Text] [Related]
16. Transport pathways for macromolecules in the aortic endothelium. II. The distribution analysis of plasmalemmal vesicles reconstructed by serial sections. Ogawa K; Taniguchi K Anat Rec; 1993 Nov; 237(3):358-64. PubMed ID: 8291689 [TBL] [Abstract][Full Text] [Related]
17. Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Sheikov N; McDannold N; Jolesz F; Zhang YZ; Tam K; Hynynen K Ultrasound Med Biol; 2006 Sep; 32(9):1399-409. PubMed ID: 16965980 [TBL] [Abstract][Full Text] [Related]
18. Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. Alvarez JI; Teale JM J Neuroimmunol; 2006 Apr; 173(1-2):45-55. PubMed ID: 16406118 [TBL] [Abstract][Full Text] [Related]
19. [The ultrastructural study of choroid plexus papillomas (author's transl)]. Wakai S; Matsutani M; Mizutani H; Sano K; Terao E No To Shinkei; 1979 Mar; 31(3):273-81. PubMed ID: 444333 [TBL] [Abstract][Full Text] [Related]
20. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Oldendorf WH; Cornford ME; Brown WJ Ann Neurol; 1977 May; 1(5):409-17. PubMed ID: 617259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]