These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37404697)

  • 1. Evolutionary history of an Alpine Archaeognath (
    Haider M; Schilling MP; Moest MH; Steiner FM; Schlick-Steiner BC; Arthofer W
    Ecol Evol; 2023 Jul; 13(7):e10227. PubMed ID: 37404697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive variation in chromosome number and genome size in sexual and parthenogenetic species of the jumping-bristletail genus Machilis (Archaeognatha).
    Gassner M; Dejaco T; Schönswetter P; Marec F; Arthofer W; Schlick-Steiner BC; Steiner FM
    Ecol Evol; 2014 Nov; 4(21):4093-105. PubMed ID: 25505536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida.
    Wachter GA; Arthofer W; Dejaco T; Rinnhofer LJ; Steiner FM; Schlick-Steiner BC
    Mol Ecol; 2012 Oct; 21(20):4983-95. PubMed ID: 22994297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taxonomist's Nightmare … Evolutionist's Delight : An Integrative Approach Resolves Species Limits in Jumping Bristletails Despite Widespread Hybridization and Parthenogenesis.
    Dejaco T; Gassner M; Arthofer W; Schlick-Steiner BC; Steiner FM
    Syst Biol; 2016 Nov; 65(6):947-974. PubMed ID: 26869489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction to "Evolutionary history of an Alpine Archaeognath (
    Ecol Evol; 2024 Jan; 14(1):e10880. PubMed ID: 38282682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide markers reveal a complex evolutionary history involving divergence and introgression in the Abert's squirrel (Sciurus aberti) species group.
    Bono JM; Pigage HK; Wettstein PJ; Prosser SA; Pigage JC
    BMC Evol Biol; 2018 Sep; 18(1):139. PubMed ID: 30208839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia.
    Maccari M; Amat F; Gómez A
    PLoS One; 2013; 8(12):e83348. PubMed ID: 24376692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy.
    Yamauchi A; Hosokawa A; Nagata H; Shimoda M
    Am Nat; 2004 Jul; 164(1):101-12. PubMed ID: 15266374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia.
    Thielsch A; Brede N; Petrusek A; de Meester L; Schwenk K
    Mol Ecol; 2009 Apr; 18(8):1616-28. PubMed ID: 19298264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, Paratanytarsus grimmii, but microsatellite variation shows local endemism.
    Carew M; Gagliardi B; Hoffmann AA
    Insect Sci; 2013 Jun; 20(3):345-57. PubMed ID: 23955886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi.
    Lewis SC; Dyal LA; Hilburn CF; Weitz S; Liau WS; Lamunyon CW; Denver DR
    BMC Evol Biol; 2009 Jan; 9():15. PubMed ID: 19149894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of parthenogenetic reproduction in Caucasian rock lizards: A review.
    Arakelyan M; Spangenberg V; Petrosyan V; Ryskov A; Kolomiets O; Galoyan E
    Curr Zool; 2023 Apr; 69(2):128-135. PubMed ID: 37091994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia.
    Maniatsi S; Baxevanis AD; Kappas I; Deligiannidis P; Triantafyllidis A; Papakostas S; Bougiouklis D; Abatzopoulos TJ
    Mol Phylogenet Evol; 2011 Feb; 58(2):353-64. PubMed ID: 21145977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems.
    Pruvost NB; Mikulíček P; Choleva L; Reyer HU
    J Evol Biol; 2015 Jan; 28(1):189-204. PubMed ID: 25411907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rise and persistence of animal polyploidy: evolutionary constraints and potential.
    Choleva L; Janko K
    Cytogenet Genome Res; 2013; 140(2-4):151-70. PubMed ID: 23838539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obligate sexual reproduction of a homothallic fungus closely related to the
    Passer AR; Clancey SA; Shea T; David-Palma M; Averette AF; Boekhout T; Porcel BM; Nowrousian M; Cuomo CA; Sun S; Heitman J; Coelho MA
    Elife; 2022 Jun; 11():. PubMed ID: 35713948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Genome and Nuclear Markers Provide New Insight into the Evolutionary History of Macaques.
    Jiang J; Yu J; Li J; Li P; Fan Z; Niu L; Deng J; Yue B; Li J
    PLoS One; 2016; 11(5):e0154665. PubMed ID: 27135608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe.
    Hoffmann A; Plötner J; Pruvost NB; Christiansen DG; Röthlisberger S; Choleva L; Mikulíček P; Cogălniceanu D; Sas-Kovács I; Shabanov D; Morozov-Leonov S; Reyer HU
    Mol Ecol; 2015 Sep; 24(17):4371-91. PubMed ID: 26308154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escape from an evolutionary dead end: a triploid clone of Gyrodactylus salaris is able to revert to sex and switch host (Platyhelminthes, Monogenea, Gyrodactylidae).
    Zietara MS; Kuusela J; Lumme J
    Hereditas; 2006 Dec; 143(2006):84-90. PubMed ID: 17362339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.