BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3740471)

  • 1. Developmental changes in the astrocytic response to lateral olfactory tract section.
    Sijbesma H; Leonard CM
    Anat Rec; 1986 Aug; 215(4):374-82. PubMed ID: 3740471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental factors affecting regeneration in the central nervous system: early but not late formed mitral cells reinnervate olfactory cortex after neonatal tract section.
    Grafe MR
    J Neurosci; 1983 Mar; 3(3):617-30. PubMed ID: 6827312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early recovery of function after olfactory tract section correlated with reinnervation of olfactory tubercle.
    Small RK; Leonard CM
    Brain Res; 1983 Mar; 283(1):25-40. PubMed ID: 6299477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transection of the rat olfactory nerve increases glial fibrillary acidic protein immunoreactivity from the olfactory bulb to the piriform cortex.
    Anders JJ; Johnson JA
    Glia; 1990; 3(1):17-25. PubMed ID: 2138132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-antigen and glial fibrillary acidic protein immunoreactivity in the in situ pineal gland of hamster and gerbil and in pineal grafts: developmental expression of pinealocyte and glial markers.
    Li K; Welsh MG
    Am J Anat; 1991 Dec; 192(4):510-22. PubMed ID: 1781457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifocal pattern of postnatal development of the macroglial framework of the rat fimbria.
    Suzuki M; Raisman G
    Glia; 1994 Dec; 12(4):294-308. PubMed ID: 7534272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroplasticity in the rearrangement of olfactory tract fibers after neonatal transection in hamsters.
    Devor M
    J Comp Neurol; 1976 Mar; 166(1):49-72. PubMed ID: 1262549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration.
    Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S
    J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways.
    Davies SJ; Field PM; Raisman G
    Exp Neurol; 1996 Dec; 142(2):203-16. PubMed ID: 8934554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord.
    Li Y; Raisman G
    Exp Neurol; 1995 Jul; 134(1):102-11. PubMed ID: 7672031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation.
    Smith GM; Miller RH; Silver J
    J Comp Neurol; 1986 Sep; 251(1):23-43. PubMed ID: 3760257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration.
    Iseda T; Nishio T; Kawaguchi S; Yamanoto M; Kawasaki T; Wakisaka S
    Neuroscience; 2004; 126(2):365-74. PubMed ID: 15207354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.
    Cohen I; Shani Y; Schwartz M
    J Comp Neurol; 1993 Aug; 334(3):431-43. PubMed ID: 8376626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats.
    Afsari ZH; Renno WM; Abd-El-Basset E
    Anat Rec (Hoboken); 2008 Apr; 291(4):390-9. PubMed ID: 18360886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of axonal connections in the central olfactory system of rats.
    Schwob JE; Price JL
    J Comp Neurol; 1984 Feb; 223(2):177-202. PubMed ID: 6200518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord.
    Li Y; Raisman G
    Exp Neurol; 1997 Jun; 145(2 Pt 1):397-411. PubMed ID: 9217076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of astroglial elements in the suprachiasmatic nucleus of the rat: with special reference to the involvement of the optic nerve.
    Munekawa K; Tamada Y; Iijima N; Hayashi S; Ishihara A; Inoue K; Tanaka M; Ibata Y
    Exp Neurol; 2000 Nov; 166(1):44-51. PubMed ID: 11031082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.