BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37405081)

  • 1. Sources of Uncertainty in a DVM-Based Measurement System for a Quantized Hall Resistance Standard.
    Lee KC; Cage ME; Rowe PS
    J Res Natl Inst Stand Technol; 1994; 99(3):227-240. PubMed ID: 37405081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Devices for Tabletop and High-Current Quantized Hall Resistance Standards.
    Rigosi AF; Panna AR; Payagala SU; Kruskopf M; Kraft ME; Jones GR; Wu BY; Lee HY; Yang Y; Hu J; Jarrett DG; Newell DB; Elmquist RE
    IEEE Trans Instrum Meas; 2018; 68():. PubMed ID: 31274879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating the Effects of Longitudinal Resistance in Multi-Series-Connected Quantum Hall Effect Devices.
    Cage ME; Jeffery A; Elmquist RE; Lee KC
    J Res Natl Inst Stand Technol; 1998; 103(6):561-592. PubMed ID: 28009360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between NIST Graphene and AIST GaAs Quantized Hall Devices.
    Oe T; Rigosi AF; Kruskopf M; Wu BY; Lee HY; Yang Y; Elmquist RE; Kaneko NH; Jarrett DG
    IEEE Trans Instrum Meas; 2019; 0():. PubMed ID: 32116347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a graphene quantum Hall Kelvin bridge-on-a-chip for resistance calibrations.
    Marzano M; Kruskopf M; Panna AR; Rigosi AF; Patel DK; Jin H; Cular S; Callegaro L; Elmquist RE; Ortolano M
    Metrologia; 2020; 57(1):. PubMed ID: 32127725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between Graphene and GaAs Quantized Hall Devices with a Dual Probe.
    Payagala SU; Rigosi AF; Panna AR; Pollarolo A; Kruskopf M; Schlamminger S; Jarrett DG; Brown R; Elmquist RE; Brown D; Newell DB
    IEEE Trans Instrum Meas; 2020; 69():9374-9380. PubMed ID: 33335334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions.
    Ribeiro-Palau R; Lafont F; Brun-Picard J; Kazazis D; Michon A; Cheynis F; Couturaud O; Consejo C; Jouault B; Poirier W; Schopfer F
    Nat Nanotechnol; 2015 Nov; 10(11):965-71. PubMed ID: 26344181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Problem in AC Quantized Hall Resistance Measurements and a Proposed Solution.
    Cage ME; Jeffery A
    J Res Natl Inst Stand Technol; 1998; 103(6):593-604. PubMed ID: 28009363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ampere and Electrical Standards.
    Elmquist RE; Cage ME; Tang YH; Jeffery AM; Kinard JR; Dziuba RF; Oldham NM; Williams ER
    J Res Natl Inst Stand Technol; 2001; 106(1):65-103. PubMed ID: 27500018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.
    Lee KC
    J Res Natl Inst Stand Technol; 1998; 103(2):177-200. PubMed ID: 28009368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Quantum Hall Effect Devices for AC and DC Electrical Metrology.
    Kruskopf M; Bauer S; Pimsut Y; Chatterjee A; Patel DK; Rigosi AF; Elmquist RE; Pierz K; Pesel E; Götz M; Schurr J
    IEEE Trans Electron Devices; 2021 Jul; 68(7):. PubMed ID: 36452065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting Contact Geometries for Next-Generation Quantized Hall Resistance Standards.
    Panna AR; Kruskopf M; Rigosi AF; Marzano M; Patel DK; Payagala SU; Jarrett DG; Newell DB; Elmquist RE
    IEEE Trans Instrum Meas; 2020; 1.633481E6():. PubMed ID: 33335333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of Germanium Resistors at Low Temperatures (2-20° Kelvin).
    Cataland G; Plumb HH
    J Res Natl Bur Stand A Phys Chem; 1966; 70A(3):243-252. PubMed ID: 31823994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Terminal and Multi-Terminal Designs for Next-Generation Quantized Hall Resistance Standards: Contact Material and Geometry.
    Kruskopf M; Rigosi AF; Panna AR; Patel DK; Jin H; Marzano M; Berilla M; Newell DB; Elmquist RE
    IEEE Trans Electron Devices; 2019; 66(9):. PubMed ID: 32116346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.
    Drung D; Krause C; Becker U; Scherer H; Ahlers FJ
    Rev Sci Instrum; 2015 Feb; 86(2):024703. PubMed ID: 25725866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation crossover-free quantum Hall arrays with superconducting interconnections.
    Kruskopf M; Rigosi AF; Panna AR; Marzano M; Patel D; Jin H; Newell DB; Elmquist RE
    Metrologia; 2019; 56(6):. PubMed ID: 32116392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special Report on Electrical Standards: New Internationally Adopted Reference Standards of Voltage and Resistance.
    Taylor BN
    J Res Natl Inst Stand Technol; 1989; 94(2):95-103. PubMed ID: 28053403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible Changes in the U.S. Legal Units Of Voltage and Resistance.
    Taylor BN
    J Res Natl Bur Stand (1977); 1986; 91(5):299-305. PubMed ID: 34345087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitaxial graphene for quantum resistance metrology.
    Kruskopf M; Elmquist RE
    Metrologia; 2018; 55():. PubMed ID: 30996479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New method for determining time constant of resistors.
    Wang Y; Jarrett D; Koffman A; Schlamminger S
    Rev Sci Instrum; 2023 Mar; 94(3):034711. PubMed ID: 37012758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.