These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37406209)

  • 41. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine Learning for Ionization Potentials and Photoionization Cross Sections of Volatile Organic Compounds.
    Stewart MP; Martin ST
    ACS Earth Space Chem; 2023 Apr; 7(4):863-875. PubMed ID: 37152449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions.
    Gupta AK; Raghavachari K
    J Chem Theory Comput; 2022 Apr; 18(4):2132-2143. PubMed ID: 35226496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach.
    Gao T; Shi LL; Li HB; Zhao SS; Li H; Sun SL; Su ZM; Lu YH
    Phys Chem Chem Phys; 2009 Jul; 11(25):5124-9. PubMed ID: 19562144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ATOMIC-2 Protocol for Thermochemistry.
    Bakowies D
    J Chem Theory Comput; 2022 Jul; 18(7):4142-4163. PubMed ID: 35658473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small copper-doped silicon clusters CuSin (n = 4-10) and their anions: structures, thermochemistry, and electron affinities.
    Lin L; Yang J
    J Mol Model; 2015 Jun; 21(6):155. PubMed ID: 26003428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.
    Dral PO; von Lilienfeld OA; Thiel W
    J Chem Theory Comput; 2015 May; 11(5):2120-2125. PubMed ID: 26146493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast and accurate modeling of molecular atomization energies with machine learning.
    Rupp M; Tkatchenko A; Müller KR; von Lilienfeld OA
    Phys Rev Lett; 2012 Feb; 108(5):058301. PubMed ID: 22400967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Partial combination of composite strategy and the B3LYP functional for the calculation of enthalpies of formation.
    Caldeira MT; Custodio R
    J Mol Model; 2019 Feb; 25(3):62. PubMed ID: 30756176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets.
    Jain R; Bally T; Rablen PR
    J Org Chem; 2009 Jun; 74(11):4017-23. PubMed ID: 19435298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular-beam experiments for photodissociation of propenal at 157 nm and quantum-chemical calculations for migration and elimination of hydrogen atoms in systems C3H4O and C3H3O.
    Chin CH; Chaudhuri C; Lee SH
    J Chem Phys; 2011 Jul; 135(4):044301. PubMed ID: 21806113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.
    Mitin AV
    J Comput Chem; 2013 Sep; 34(23):2014-9. PubMed ID: 23775397
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models.
    Ward L; Dandu N; Blaiszik B; Narayanan B; Assary RS; Redfern PC; Foster I; Curtiss LA
    J Phys Chem A; 2021 Jul; 125(27):5990-5998. PubMed ID: 34191512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships.
    Janet JP; Kulik HJ
    J Phys Chem A; 2017 Nov; 121(46):8939-8954. PubMed ID: 29095620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PointGAT: A Quantum Chemical Property Prediction Model Integrating Graph Attention and 3D Geometry.
    Zhang R; Yuan R; Tian B
    J Chem Theory Comput; 2024 May; 20(10):4115-4128. PubMed ID: 38727259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Basis set and method dependence in quantum theory of atoms in molecules calculations for covalent bonds.
    Jabłoński M; Palusiak M
    J Phys Chem A; 2010 Dec; 114(47):12498-505. PubMed ID: 21049895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.