These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37406303)

  • 61. Control of Foxp3 stability through modulation of TET activity.
    Yue X; Trifari S; Äijö T; Tsagaratou A; Pastor WA; Zepeda-Martínez JA; Lio CW; Li X; Huang Y; Vijayanand P; Lähdesmäki H; Rao A
    J Exp Med; 2016 Mar; 213(3):377-97. PubMed ID: 26903244
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optochemical Control of TET Dioxygenases Enables Kinetic Insights into the Domain-Dependent Interplay of TET1 and MBD1 while Oxidizing and Reading 5-Methylcytosine.
    Lin TC; Palei S; Summerer D
    ACS Chem Biol; 2022 Jul; 17(7):1844-1852. PubMed ID: 35709470
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tet3 regulates cellular identity and DNA methylation in neural progenitor cells.
    Santiago M; Antunes C; Guedes M; Iacovino M; Kyba M; Reik W; Sousa N; Pinto L; Branco MR; Marques CJ
    Cell Mol Life Sci; 2020 Jul; 77(14):2871-2883. PubMed ID: 31646359
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Roles and Regulations of TET Enzymes in Solid Tumors.
    Bray JK; Dawlaty MM; Verma A; Maitra A
    Trends Cancer; 2021 Jul; 7(7):635-646. PubMed ID: 33468438
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells.
    Dawlaty MM; Breiling A; Le T; Barrasa MI; Raddatz G; Gao Q; Powell BE; Cheng AW; Faull KF; Lyko F; Jaenisch R
    Dev Cell; 2014 Apr; 29(1):102-11. PubMed ID: 24735881
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Expression and prognosis analysis of
    Zhang T; Zhao Y; Zhao Y; Zhou J
    Aging (Albany NY); 2020 Mar; 12(6):5031-5047. PubMed ID: 32209730
    [No Abstract]   [Full Text] [Related]  

  • 67. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells.
    Gu T; Lin X; Cullen SM; Luo M; Jeong M; Estecio M; Shen J; Hardikar S; Sun D; Su J; Rux D; Guzman A; Lee M; Qi LS; Chen JJ; Kyba M; Huang Y; Chen T; Li W; Goodell MA
    Genome Biol; 2018 Jul; 19(1):88. PubMed ID: 30001199
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ten-Eleven Translocation-3 CXXC domain is critical for postfertilization demethylation and expression of pluripotency genes in pig embryos†.
    Uh K; Lee K
    Biol Reprod; 2022 Nov; 107(5):1205-1216. PubMed ID: 35766395
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation.
    An J; Ko M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675240
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency.
    Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS
    Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis.
    Ma L; Tang Q; Gao X; Lee J; Lei R; Suzuki M; Zheng D; Ito K; Frenette PS; Dawlaty MM
    Sci Adv; 2022 Mar; 8(9):eabm3470. PubMed ID: 35235365
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes.
    Graves C; Islam K
    Methods Enzymol; 2024; 703():87-120. PubMed ID: 39261005
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mapping of the juxtacentromeric heterochromatin-euchromatin frontier of human chromosome 21.
    Grunau C; Buard J; Brun ME; De Sario A
    Genome Res; 2006 Oct; 16(10):1198-207. PubMed ID: 16963709
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TET proteins and 5-methylcytosine oxidation in the immune system.
    Tsagaratou A; Rao A
    Cold Spring Harb Symp Quant Biol; 2013; 78():1-10. PubMed ID: 24619230
    [TBL] [Abstract][Full Text] [Related]  

  • 76. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they?
    Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ
    Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796
    [TBL] [Abstract][Full Text] [Related]  

  • 77. TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1.
    Wang Q; Wang W; Zhang A
    Toxicol In Vitro; 2021 Apr; 72():105075. PubMed ID: 33388378
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease.
    Kweon SM; Zhu B; Chen Y; Aravind L; Xu SY; Feldman DE
    Cell Rep; 2017 Oct; 21(2):482-494. PubMed ID: 29020633
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops.
    Sabino JC; de Almeida MR; Abreu PL; Ferreira AM; Caldas P; Domingues MM; Santos NC; Azzalin CM; Grosso AR; de Almeida SF
    Elife; 2022 Feb; 11():. PubMed ID: 35191837
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of 5-Hydroxymethylcytosine by TET2 Contributes to Squamous Cell Carcinoma Tumorigenesis.
    Boudra R; Woappi Y; Wang D; Xu S; Wells M; Schmults CD; Lian CG; Ramsey MR
    J Invest Dermatol; 2022 May; 142(5):1270-1279.e2. PubMed ID: 34695415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.