These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37406355)
1. Enzyme and MicroRNA Dual-Regulated Photodynamic Molecular Beacons for Cell-Selective Amplification of Antitumor Efficacy. Feng X; Li L; Zhao Y; Li M Nano Lett; 2023 Aug; 23(16):7743-7749. PubMed ID: 37406355 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620 [TBL] [Abstract][Full Text] [Related]
3. Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Chen J; Jarvi M; Lo PC; Stefflova K; Wilson BC; Zheng G Photochem Photobiol Sci; 2007 Dec; 6(12):1311-7. PubMed ID: 18046487 [TBL] [Abstract][Full Text] [Related]
4. New photodynamic molecular beacons (PMB) as potential cancer-targeted agents in PDT. Stallivieri A; Colombeau L; Devy J; Etique N; Chaintreuil C; Myrzakhmetov B; Achard M; Baros F; Arnoux P; Vanderesse R; Frochot C Bioorg Med Chem; 2018 Feb; 26(3):688-702. PubMed ID: 29338907 [TBL] [Abstract][Full Text] [Related]
5. A Tumor-Targeting Dual-Stimuli-Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Tam LKB; He L; Ng DKP; Cheung PCK; Lo PC Chemistry; 2022 Oct; 28(57):e202201652. PubMed ID: 35852020 [TBL] [Abstract][Full Text] [Related]
6. Engineering of ATP-Powered Photosensitizer for Targeted Recycling Activatable Imaging of MicroRNA and Controllable Cascade Amplification Photodynamic Therapy. Shen Y; Wu T; Tian Q; Mao Y; Hu J; Luo X; Ye Y; Chen HY; Xu JJ Anal Chem; 2019 Jun; 91(12):7879-7886. PubMed ID: 31083980 [TBL] [Abstract][Full Text] [Related]
7. Fibroblast activation protein α activatable theranostic pro-photosensitizer for accurate tumor imaging and highly-specific photodynamic therapy. Luo Y; Zeng Z; Shan T; Xu X; Chen J; He Y; Zhang T; Huang Z; Chai G; Huang Y; Zhao Y; Zhao C Theranostics; 2022; 12(8):3610-3627. PubMed ID: 35664057 [TBL] [Abstract][Full Text] [Related]
8. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Jin CS; Cui L; Wang F; Chen J; Zheng G Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930 [TBL] [Abstract][Full Text] [Related]
9. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Luby BM; Walsh CD; Zheng G Angew Chem Int Ed Engl; 2019 Feb; 58(9):2558-2569. PubMed ID: 29890024 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy. Huang X; Chen T; Mu N; Lam HW; Sun C; Yue L; Cheng Q; Gao C; Yuan Z; Wang R Acta Biomater; 2021 Sep; 131():483-492. PubMed ID: 34265471 [TBL] [Abstract][Full Text] [Related]
11. Rational Design of Phosphorescent Iridium(III) Complexes for Selective Glutathione Sensing and Amplified Photodynamic Therapy. Huang T; Yu Q; Liu S; Zhang KY; Huang W; Zhao Q Chembiochem; 2019 Feb; 20(4):576-586. PubMed ID: 30267457 [TBL] [Abstract][Full Text] [Related]
12. A dual enzyme-mimicking radical generator for enhanced photodynamic therapy Cao Z; Zhang L; Liu J; Wang D; Liang K; Chen Y; Gu Z Nanoscale; 2021 Oct; 13(41):17386-17395. PubMed ID: 34611685 [TBL] [Abstract][Full Text] [Related]
13. A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Wang R; Xia X; Yang Y; Rong X; Liu T; Su Z; Zeng X; Du J; Fan J; Sun W; Peng X Adv Healthc Mater; 2022 Feb; 11(4):e2102017. PubMed ID: 34812594 [TBL] [Abstract][Full Text] [Related]
14. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Qi T; Chen B; Wang Z; Du H; Liu D; Yin Q; Liu B; Zhang Q; Wang Y Biomaterials; 2019 Aug; 213():119219. PubMed ID: 31132647 [TBL] [Abstract][Full Text] [Related]
15. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice. Aires-Fernandes M; Botelho Costa R; Rochetti do Amaral S; Mussagy CU; Santos-Ebinuma VC; Primo FL Molecules; 2022 Oct; 27(20):. PubMed ID: 36296441 [TBL] [Abstract][Full Text] [Related]
16. The role of microRNAs in photodynamic therapy of cancer. El-Daly SM; Abba ML; Gamal-Eldeen AM Eur J Med Chem; 2017 Dec; 142():550-555. PubMed ID: 29033001 [TBL] [Abstract][Full Text] [Related]
17. Apoptosis-related microRNA-145-5p enhances the effects of pheophorbide a-based photodynamic therapy in oral cancer. Moon S; Kim DK; Kim J Oncotarget; 2017 May; 8(21):35184-35192. PubMed ID: 28456786 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. Pucelik B; Sułek A; Drozd A; Stochel G; Pereira MM; Pinto SMA; Arnaut LG; Dąbrowski JM Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316355 [TBL] [Abstract][Full Text] [Related]
19. Directed molecular assembly into a biocompatible photosensitizing nanocomplex for locoregional photodynamic therapy. Lee YD; Cho HJ; Choi MH; Park H; Bang J; Lee S; Kwon IC; Kim S J Control Release; 2015 Jul; 209():12-9. PubMed ID: 25872152 [TBL] [Abstract][Full Text] [Related]
20. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]