These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37406494)

  • 1. Exploring the environmental consequences of roadside grass as a biogas feedstock in Northwest Europe.
    Ravi R; de Souza MF; Adriaens A; Vingerhoets R; Luo H; Van Dael M; Meers E
    J Environ Manage; 2023 Oct; 344():118538. PubMed ID: 37406494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.
    De Vries JW; Vinken TM; Hamelin L; De Boer IJ
    Bioresour Technol; 2012 Dec; 125():239-48. PubMed ID: 23026340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial-economic optimisation of biomethane injection into natural gas grid: The case at southern Malaysia.
    Hoo PY; Hashim H; Ho WS; Yunus NA
    J Environ Manage; 2019 Jul; 241():603-611. PubMed ID: 30616893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment.
    Ramírez-Islas ME; Güereca LP; Sosa-Rodriguez FS; Cobos-Peralta MA
    Waste Manag; 2020 Feb; 102():85-96. PubMed ID: 31669678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.
    Hagelqvist A; Granström K
    Environ Technol; 2016 Aug; 37(16):2113-23. PubMed ID: 26776302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techno-economic evaluation of GHG emissions mitigation of biomethane upgrading technologies.
    Agostini A; Buffi M; Hurtig O; Carbone C; Zanoni F; Monteleone G
    J Environ Manage; 2024 Jul; 364():121459. PubMed ID: 38870798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.
    O'Shea R; Wall D; Murphy JD
    Bioresour Technol; 2016 Sep; 216():238-49. PubMed ID: 27240240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.
    Styles D; Dominguez EM; Chadwick D
    Sci Total Environ; 2016 Aug; 560-561():241-53. PubMed ID: 27101461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels.
    Natividad Pérez-Camacho M; Curry R; Cromie T
    Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste.
    Morero B; Vicentin R; Campanella EA
    Waste Manag; 2017 Mar; 61():195-205. PubMed ID: 27955887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.
    Ertem FC; Martínez-Blanco J; Finkbeiner M; Neubauer P; Junne S
    Bioresour Technol; 2016 Nov; 219():536-544. PubMed ID: 27522120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of biomethane use in Argentina.
    Morero B; Groppelli E; Campanella EA
    Bioresour Technol; 2015 Apr; 182():208-216. PubMed ID: 25700340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations.
    Ulukardesler AH
    Sci Rep; 2023 Apr; 13(1):6320. PubMed ID: 37072450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical methane potential of residual biomass for energy generation.
    Galván-Arzola U; Moreno-Medina CU; Lucho-Chigo R; Rodríguez-Rosales MDJ; Valencia-Vázquez R
    Environ Technol; 2021 Mar; 42(8):1165-1178. PubMed ID: 31475614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy performance of compressed biomethane gas production from co-digestion of Salix and dairy manure: factoring differences between Salix varieties.
    Kalita S; Ohlsson JA; Karlsson Potter H; Nordberg Å; Sandgren M; Hansson PA
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):165. PubMed ID: 37924121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of Turkey's province-based livestock sector to mitigate GHG emissions through biogas production.
    Ersoy E; Ugurlu A
    J Environ Manage; 2020 Feb; 255():109858. PubMed ID: 32063318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.