These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37406589)
1. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer. Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589 [TBL] [Abstract][Full Text] [Related]
2. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
3. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
4. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Wang Y; Yang Y; Chen S; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890 [TBL] [Abstract][Full Text] [Related]
5. DeepFusionCDR: Employing Multi-Omics Integration and Molecule-Specific Transformers for Enhanced Prediction of Cancer Drug Responses. Hu X; Zhang P; Zhang J; Deng L IEEE J Biomed Health Inform; 2024 Oct; 28(10):6248-6258. PubMed ID: 38935469 [TBL] [Abstract][Full Text] [Related]
6. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis. Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q Methods; 2023 May; 213():1-9. PubMed ID: 36933628 [TBL] [Abstract][Full Text] [Related]
7. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458 [TBL] [Abstract][Full Text] [Related]
8. A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction. Tan K; Huang W; Hu J; Dong S BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):129. PubMed ID: 32646413 [TBL] [Abstract][Full Text] [Related]
9. Deep learning and multi-omics approach to predict drug responses in cancer. Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676 [TBL] [Abstract][Full Text] [Related]
10. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Li Y; Guo Z; Gao X; Wang G Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154 [TBL] [Abstract][Full Text] [Related]
11. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Peng W; Liu H; Dai W; Yu N; Wang J Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568 [TBL] [Abstract][Full Text] [Related]
12. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction. Chen Y; Zhang L Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131 [TBL] [Abstract][Full Text] [Related]
13. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197 [TBL] [Abstract][Full Text] [Related]
14. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning. Pang W; Chen M; Qin Y BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920 [TBL] [Abstract][Full Text] [Related]
15. DeepDRA: Drug repurposing using multi-omics data integration with autoencoders. Mohammadzadeh-Vardin T; Ghareyazi A; Gharizadeh A; Abbasi K; Rabiee HR PLoS One; 2024; 19(7):e0307649. PubMed ID: 39058696 [TBL] [Abstract][Full Text] [Related]
16. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction. Lee M; Kim PJ; Joe H; Kim HG Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883 [TBL] [Abstract][Full Text] [Related]
17. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. Emdadi A; Eslahchi C BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079 [TBL] [Abstract][Full Text] [Related]
18. [Predicting tumor drug sensitivity with multi-omics data]. Yang C; Liu Z; Dai P; Zhang Y; Huang P; Lin Y; Xie L Sheng Wu Gong Cheng Xue Bao; 2022 Jun; 38(6):2201-2212. PubMed ID: 35786472 [TBL] [Abstract][Full Text] [Related]
19. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Saranya KR; Vimina ER Comput Biol Chem; 2024 Oct; 112():108175. PubMed ID: 39191166 [TBL] [Abstract][Full Text] [Related]
20. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. Xu M; Zhu Z; Zhao Y; He K; Huang Q; Zhao Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1468-1479. PubMed ID: 38776197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]