These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37406611)
1. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Mamidi N; Ijadi F; Norahan MH Biomacromolecules; 2024 Apr; 25(4):2075-2113. PubMed ID: 37406611 [TBL] [Abstract][Full Text] [Related]
2. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Sakr MA; Sakthivel K; Hossain T; Shin SR; Siddiqua S; Kim J; Kim K J Biomed Mater Res A; 2022 Mar; 110(3):708-724. PubMed ID: 34558808 [TBL] [Abstract][Full Text] [Related]
3. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
4. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. Huang L; Chen X; Yang X; Zhang Y; Qiu X J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35412. PubMed ID: 38701383 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409 [TBL] [Abstract][Full Text] [Related]
6. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619 [TBL] [Abstract][Full Text] [Related]
7. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration. Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941 [TBL] [Abstract][Full Text] [Related]
8. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. Gao C; Sow WT; Wang Y; Wang Y; Yang D; Lee BH; Matičić D; Fang L; Li H; Zhang C J Mater Chem B; 2021 Mar; 9(8):2033-2041. PubMed ID: 33587079 [TBL] [Abstract][Full Text] [Related]
9. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Zhang Y; Chen H; Li J Int J Biol Macromol; 2022 Nov; 221():91-107. PubMed ID: 36057299 [TBL] [Abstract][Full Text] [Related]
10. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration. Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761 [TBL] [Abstract][Full Text] [Related]
11. 3D Printing GelMA/PVA Interpenetrating Polymer Networks Scaffolds Mediated with CuO Nanoparticles for Angiogenesis. Hu Q; Lu R; Liu S; Liu Y; Gu Y; Zhang H Macromol Biosci; 2022 Oct; 22(10):e2200208. PubMed ID: 35904133 [TBL] [Abstract][Full Text] [Related]
12. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. Akhtar M; Peng P; Bernhardt A; Gelinsky M; Ur Rehman MA; Boccaccini AR; Basu B ACS Biomater Sci Eng; 2024 Aug; 10(8):5122-5135. PubMed ID: 39038164 [TBL] [Abstract][Full Text] [Related]
13. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Das S; Jegadeesan JT; Basu B Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816 [TBL] [Abstract][Full Text] [Related]
14. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
15. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Pramanik S; Alhomrani M; Alamri AS; Alsanie WF; Nainwal P; Kimothi V; Deepak A; Sargsyan AS Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38768611 [TBL] [Abstract][Full Text] [Related]
16. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels. Ansari S; Sarrion P; Hasani-Sadrabadi MM; Aghaloo T; Wu BM; Moshaverinia A J Biomed Mater Res A; 2017 Nov; 105(11):2957-2967. PubMed ID: 28639378 [TBL] [Abstract][Full Text] [Related]
17. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Asl SK; Rahimzadegan M; Asl AK Int J Biol Macromol; 2024 Mar; 261(Pt 2):129924. PubMed ID: 38311143 [TBL] [Abstract][Full Text] [Related]
18. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107 [TBL] [Abstract][Full Text] [Related]