These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37407427)

  • 1. Bio-precipitation of arsenic and antimony in a sulfate-reducing bioreactor treating real acid mine drainage water.
    Laroche E; Joulian C; Duee C; Casiot C; Héry M; Battaglia-Brunet F
    FEMS Microbiol Ecol; 2023 Jul; 99(8):. PubMed ID: 37407427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation.
    Wang H; Chen F; Mu S; Zhang D; Pan X; Lee DJ; Chang JS
    Bioresour Technol; 2013 Oct; 146():799-802. PubMed ID: 23993285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.
    Sun W; Xiao E; Kalin M; Krumins V; Dong Y; Ning Z; Liu T; Sun M; Zhao Y; Wu S; Mao J; Xiao T
    Environ Pollut; 2016 Aug; 215():213-222. PubMed ID: 27208755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic removal in a sulfidogenic fixed-bed column bioreactor.
    Altun M; Sahinkaya E; Durukan I; Bektas S; Komnitsas K
    J Hazard Mater; 2014 Mar; 269():31-7. PubMed ID: 24360509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bioremediation of acid mine-influenced groundwater with micro-sized emulsified corn oil droplets (MOD) and sulfate-reducing bacteria (Desulfovibrio vulgaris) in a microcosm assay.
    Hussain F; Kim LH; Kim H; Kim Y; Oh SE; Kim S
    Chemosphere; 2024 Mar; 352():141403. PubMed ID: 38368967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium.
    Le Pape P; Battaglia-Brunet F; Parmentier M; Joulian C; Gassaud C; Fernandez-Rojo L; Guigner JM; Ikogou M; Stetten L; Olivi L; Casiot C; Morin G
    J Hazard Mater; 2017 Jan; 321():764-772. PubMed ID: 27720469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage.
    Hiibel SR; Pereyra LP; Inman LY; Tischer A; Reisman DJ; Reardon KF; Pruden A
    Environ Microbiol; 2008 Aug; 10(8):2087-97. PubMed ID: 18430021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.
    Johnson DB; Hallberg KB
    Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the precipitation of iron and the synchronous removal mechanisms of antimony and arsenic in the AMD under the induction of carbonate rocks.
    Zhang S; Zhang R; Wu P; Zhang Y; Fu Y; An L; Zhang Y
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):55161-55173. PubMed ID: 35316491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor.
    Nogueira EW; Gouvêa de Godoi LA; Marques Yabuki LN; Brucha G; Zamariolli Damianovic MHR
    Bioresour Technol; 2021 Jun; 330():124968. PubMed ID: 33744733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Kobayashi M; Habe H; Sakata T
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7783-7793. PubMed ID: 31388728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.
    Tabak HH; Govind R
    Biodegradation; 2003 Dec; 14(6):437-52. PubMed ID: 14669874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination.
    Cidu R; Biddau R; Dore E; Vacca A; Marini L
    Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community.
    Wang H; Zhang M; Dong P; Xue J; Liu L
    Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field-pilot for passive bioremediation of As-rich acid mine drainage.
    Fernandez-Rojo L; Casiot C; Laroche E; Tardy V; Bruneel O; Delpoux S; Desoeuvre A; Grapin G; Savignac J; Boisson J; Morin G; Battaglia-Brunet F; Joulian C; Héry M
    J Environ Manage; 2019 Feb; 232():910-918. PubMed ID: 30530282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor.
    Battaglia-Brunet F; Crouzet C; Burnol A; Coulon S; Morin D; Joulian C
    Water Res; 2012 Aug; 46(12):3923-33. PubMed ID: 22608606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic, antimony, and nickel leaching from northern peatlands treating mining influenced water in cold climate.
    Khan UA; Kujala K; Nieminen SP; Räisänen ML; Ronkanen AK
    Sci Total Environ; 2019 Mar; 657():1161-1172. PubMed ID: 30677883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.
    Li Y; Hu X; Ren B
    Water Sci Technol; 2016; 73(9):2039-51. PubMed ID: 27148704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.