BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37407848)

  • 1. Immune micro-environment analysis and establishment of response prediction model for PD-1 blockade immunotherapy in glioblastoma based on transcriptome deconvolution.
    Wong D; Yin Y
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):11689-11703. PubMed ID: 37407848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation a prognostic model based on natural killer T cells marker genes for predicting prognosis and characterizing immune status in glioblastoma through integrated analysis of single-cell and bulk RNA sequencing.
    Hu J; Xu L; Fu W; Sun Y; Wang N; Zhang J; Yang C; Zhang X; Zhou Y; Wang R; Zhang H; Mou R; Du X; Li X; Hu S; Xie R
    Funct Integr Genomics; 2023 Aug; 23(3):286. PubMed ID: 37650991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N
    Zhao R; Li B; Zhang S; He Z; Pan Z; Guo Q; Qiu W; Qi Y; Zhao S; Wang S; Chen Z; Zhang P; Guo X; Xue H; Li G
    Front Immunol; 2021; 12():653711. PubMed ID: 34354698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma.
    Kiyokawa J; Kawamura Y; Ghouse SM; Acar S; Barçın E; Martínez-Quintanilla J; Martuza RL; Alemany R; Rabkin SD; Shah K; Wakimoto H
    Clin Cancer Res; 2021 Feb; 27(3):889-902. PubMed ID: 33257429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining single-cell sequencing and spatial transcriptome sequencing to identify exosome-related features of glioblastoma and constructing a prognostic model to identify BARD1 as a potential therapeutic target for GBM patients.
    Zhao S; Wang Q; Ni K; Zhang P; Liu Y; Xie J; Ji W; Cheng C; Zhou Q
    Front Immunol; 2023; 14():1263329. PubMed ID: 37727789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
    Zhao B; Wang Y; Wang Y; Chen W; Liu PH; Kong Z; Dai C; Wang Y; Ma W
    J Cell Physiol; 2021 Jan; 236(1):507-522. PubMed ID: 32572951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer.
    Han Y; Liu SM; Jin R; Meng W; Wu YL; Li H
    Front Immunol; 2023; 14():1178193. PubMed ID: 37492578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists.
    Broggi G; Angelico G; Farina J; Tinnirello G; Barresi V; Zanelli M; Palicelli A; Certo F; Barbagallo G; Magro G; Caltabiano R
    Pathol Res Pract; 2024 Feb; 254():155144. PubMed ID: 38277747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Importance of the lncRNA NEAT1 in Cancer Patients Treated with Immune Checkpoint Inhibitors.
    Toker J; Iorgulescu JB; Ling AL; Villa GR; Gadet JAMA; Parida L; Getz G; Wu CJ; Reardon DA; Chiocca EA; Mineo M
    Clin Cancer Res; 2023 Jun; 29(12):2226-2238. PubMed ID: 37053197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tumor-targeting nanomedicine carrying the p53 gene crosses the blood-brain barrier and enhances anti-PD-1 immunotherapy in mouse models of glioblastoma.
    Kim SS; Harford JB; Moghe M; Slaughter T; Doherty C; Chang EH
    Int J Cancer; 2019 Nov; 145(9):2535-2546. PubMed ID: 31241175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma.
    Antonios JP; Soto H; Everson RG; Moughon D; Orpilla JR; Shin NP; Sedighim S; Treger J; Odesa S; Tucker A; Yong WH; Li G; Cloughesy TF; Liau LM; Prins RM
    Neuro Oncol; 2017 Jun; 19(6):796-807. PubMed ID: 28115578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking Wnt/β-catenin Signal Amplifies Anti-PD-1 Therapeutic Efficacy by Inhibiting Tumor Growth, Migration, and Promoting Immune Infiltration in Glioblastomas.
    Zhang H; Bi Y; Wei Y; Liu J; Kuerban K; Ye L
    Mol Cancer Ther; 2021 Jul; 20(7):1305-1315. PubMed ID: 34001635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy.
    White K; Connor K; Meylan M; Bougoüin A; Salvucci M; Bielle F; O'Farrell AC; Sweeney K; Weng L; Bergers G; Dicker P; Ashley DM; Lipp ES; Low JT; Zhao J; Wen P; Prins R; Verreault M; Idbaih A; Biswas A; Prehn JHM; Lambrechts D; Arijs I; Lodi F; Dilcan G; Lamfers M; Leenstra S; Fabro F; Ntafoulis I; Kros JM; Cryan J; Brett F; Quissac E; Beausang A; MacNally S; O'Halloran P; Clerkin J; Bacon O; Kremer A; Chi Yen RT; Varn FS; Verhaak RGW; Sautès-Fridman C; Fridman WH; Byrne AT
    Ann Oncol; 2023 Mar; 34(3):300-314. PubMed ID: 36494005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Current Landscape of Immune Checkpoint Blockade in Glioblastoma.
    Akintola OO; Reardon DA
    Neurosurg Clin N Am; 2021 Apr; 32(2):235-248. PubMed ID: 33781505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Radiosensitivity Gene Signature and PD-L1 Status Predict Clinical Outcome of Patients with Glioblastoma Multiforme in The Cancer Genome Atlas Dataset.
    Jang BS; Kim IA
    Cancer Res Treat; 2020 Apr; 52(2):530-542. PubMed ID: 31801317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty Acid Metabolic Signaling Pathway Alternation Predict Prognosis of Immune Checkpoint Inhibitors in Glioblastoma.
    Liu R; Liang W; Hua Q; Wu L; Wang X; Li Q; Zhong F; Li B; Qiu Z
    Front Immunol; 2022; 13():819515. PubMed ID: 35251000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and validation of an immune-based prognostic score model in glioblastoma.
    Qin Z; Zhang X; Chen Z; Liu N
    Int Immunopharmacol; 2020 Aug; 85():106636. PubMed ID: 32534425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients.
    Wang Z; Wang Y; Yang T; Xing H; Wang Y; Gao L; Guo X; Xing B; Wang Y; Ma W
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and validation of neurotrophic factor-related gene signatures in glioblastoma and Parkinson's disease.
    Zhao S; Chi H; Yang Q; Chen S; Wu C; Lai G; Xu K; Su K; Luo H; Peng G; Xia Z; Cheng C; Lu P
    Front Immunol; 2023; 14():1090040. PubMed ID: 36825022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer.
    Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I
    Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.