These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37407868)

  • 21. Theoretical Studies on the Performance of HMX with Different Energetic Groups.
    Hao L; Liu X; Zhai D; Qiu L; Ma C; Ma P; Jiang J
    ACS Omega; 2020 Nov; 5(46):29922-29934. PubMed ID: 33251428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonisothermal decomposition kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo[3,3,1]onan-3,7-dione (TNPDU).
    Ma HX; Song JR; Zhao FQ; Hu RZ; Xiao HM
    J Phys Chem A; 2007 Sep; 111(35):8642-9. PubMed ID: 17696412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical investigation of nitrogen-rich high-energy-density materials based on furazan substituted s-triazine.
    Huang Y; Zhang Q; Zhan LW; Hou J; Li BD
    J Mol Model; 2020 Jun; 26(7):175. PubMed ID: 32529276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical design of novel energetic salts derived from bicyclo-HMX.
    Zhang C; Zhao FQ; Xu SY; Ju XH
    J Mol Model; 2018 Oct; 24(10):304. PubMed ID: 30280266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative theoretical studies of differently bridged nitramino-substituted ditetrazole 2-N-oxides with high detonation performance and an oxygen balance of around zero.
    Wu Q; Kou B; Hang Z; Zhu W
    J Mol Model; 2017 Jun; 23(6):186. PubMed ID: 28497214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational investigation of the properties of double furazan-based and furoxan-based energetic materials.
    Xia M; Chu Y; Wang T; Lei W; Wang F
    J Mol Model; 2016 Nov; 22(11):268. PubMed ID: 27766503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical exploration about nitro-substituted derivatives of pyrimidine as high-energy-density materials.
    Wang X; Zhang X; Song Y; Xu Z; Meng Y; Li B
    J Mol Model; 2019 Dec; 26(1):5. PubMed ID: 31834524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical investigation of the structure, detonation properties, and stability of bicyclo[3.2.1]octane derivatives.
    Du M; Han T; Liu F; Wu H
    J Mol Model; 2019 Jul; 25(8):253. PubMed ID: 31359151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-free energetic materials: computational study on nitro-substituted BN-cage molecules with high heat of detonation and stability.
    Zeng X; Li N; Jiao Q
    RSC Adv; 2018 Apr; 8(26):14654-14662. PubMed ID: 35540731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of the structure, stability and energetic performance of 5,5'-bitetrazole-1,1'-diolate based energetic ionic salts: future high energy density materials.
    Abraham BM; Ghule VD; Vaitheeswaran G
    Phys Chem Chem Phys; 2018 Dec; 20(47):29693-29707. PubMed ID: 30480268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular design of energetic tetrazine-triazole derivatives.
    Li Y; Li Y; Jin S; Li S; Chen K; Bao F
    J Mol Model; 2021 Feb; 27(3):98. PubMed ID: 33641021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical design of energetic nitrogen-rich derivatives of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane.
    Wu Q; Zhu W; Xiao H
    J Mol Model; 2013 Aug; 19(8):2945-54. PubMed ID: 23559097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular design and screening of energetic nitramine derivatives.
    Devi A; Deswal S; Dharavath S; Ghule VD
    J Mol Model; 2015 Nov; 21(11):298. PubMed ID: 26518690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of Energetic Materials Based on Asymmetric Oxadiazole.
    Jin X; Xiao M; Zhou J; Zhou G; Hu B
    ChemistryOpen; 2019 Jun; 8(6):692-700. PubMed ID: 31172006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination multi-nitrogen with high heat of formation: theoretical studies on the performance of bridged 1,2,4,5-tetrazine derivatives.
    Zeng L; Li J; Qiao C; Jiang Y; Wu J; Li H; Zhang J
    J Mol Model; 2021 Dec; 28(1):3. PubMed ID: 34874491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substituted triazolo-triazine derivatives as energetic materials: a computational investigation and assessment.
    Maan A; Mathpati RS; Ghule VD
    J Mol Model; 2020 Jun; 26(7):184. PubMed ID: 32594252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Looking for high energy density compounds among polynitraminecubanes.
    Chi WJ; Li LL; Li BT; Wu HS
    J Mol Model; 2013 Feb; 19(2):571-80. PubMed ID: 22961623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and properties of N,N'-linked bis-1,2,4-triazoles compounds as promising energetic materials.
    Bao F; Jin S; Li Y; Zhang Y; Chen K; Li L
    J Mol Model; 2020 May; 26(6):130. PubMed ID: 32394132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical study of the heats of formation, detonation properties, and bond dissociation energies of substituted bis-1,2,4-triazole compounds.
    Bao F; Zhang G; Jin S; Zhang Y; Shu Q; Li L
    J Mol Model; 2018 Mar; 24(4):85. PubMed ID: 29511823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trinitromethyl Energetic Groups Enhance High Heats of Detonation.
    Chen P; Dou H; Zhang J; He C; Pang S
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4144-4151. PubMed ID: 36629788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.