BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37407936)

  • 1. Segregation between breeds and local breed proportions in genetic and genomic models for crossbreds.
    Eiríksson JH; Su G; Strandén I; Christensen OF
    Genet Sel Evol; 2023 Jul; 55(1):45. PubMed ID: 37407936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local breed proportions and local breed heterozygosity in genomic predictions for crossbred dairy cows.
    Eiríksson JH; Strandén I; Su G; Mäntysaari EA; Christensen OF
    J Dairy Sci; 2022 Nov; 105(12):9822-9836. PubMed ID: 36307242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breed of origin of alleles and genomic predictions for crossbred dairy cows.
    Eiríksson JH; Karaman E; Su G; Christensen OF
    Genet Sel Evol; 2021 Nov; 53(1):84. PubMed ID: 34742238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic evaluation for a three-way crossbreeding system considering breed-of-origin of alleles.
    Sevillano CA; Vandenplas J; Bastiaansen JWM; Bergsma R; Calus MPL
    Genet Sel Evol; 2017 Oct; 49(1):75. PubMed ID: 29061123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multibreed genomic prediction using summary statistics and a breed-origin-of-alleles approach.
    Clasen JB; Fikse WF; Su G; Karaman E
    Heredity (Edinb); 2023 Jul; 131(1):33-42. PubMed ID: 37231157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin.
    Sevillano CA; Ten Napel J; Guimarães SEF; Silva FF; Calus MPL
    BMC Genomics; 2018 Oct; 19(1):740. PubMed ID: 30305017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic predictions for crossbred dairy cows by combining solutions from purebred evaluation based on breed origin of alleles.
    Eiríksson JH; Byskov K; Su G; Thomasen JR; Christensen OF
    J Dairy Sci; 2022 Jun; 105(6):5178-5191. PubMed ID: 35465992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assigning breed origin to alleles in crossbred animals.
    Vandenplas J; Calus MP; Sevillano CA; Windig JJ; Bastiaansen JW
    Genet Sel Evol; 2016 Aug; 48(1):61. PubMed ID: 27549177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic prediction using a reference population of multiple pure breeds and admixed individuals.
    Karaman E; Su G; Croue I; Lund MS
    Genet Sel Evol; 2021 May; 53(1):46. PubMed ID: 34058971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A breed-of-origin of alleles model that includes crossbred data improves predictive ability for crossbred animals in a multi-breed population.
    Guillenea A; Lund MS; Evans R; Boerner V; Karaman E
    Genet Sel Evol; 2023 May; 55(1):34. PubMed ID: 37189059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic prediction in Nordic Red dairy cattle considering breed origin of alleles.
    Guillenea A; Su G; Lund MS; Karaman E
    J Dairy Sci; 2022 Mar; 105(3):2426-2438. PubMed ID: 35033341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Evaluation for a Crossbreeding System Implementing Breed-of-Origin for Targeted Markers.
    Sevillano CA; Bovenhuis H; Calus MPL
    Front Genet; 2019; 10():418. PubMed ID: 31130991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balanced selection on purebred and crossbred performance increases gain in crossbreds.
    Esfandyari H; Berg P; Sørensen AC
    Genet Sel Evol; 2018 Mar; 50(1):8. PubMed ID: 29566647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Accuracy of Multi-Breed Prediction in Admixed Populations by Accounting for the Breed Origin of Haplotype Segments.
    Schmid M; Stock J; Bennewitz J; Wellmann R
    Front Genet; 2022; 13():840815. PubMed ID: 35401683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic selection for crossbred performance accounting for breed-specific effects.
    Lopes MS; Bovenhuis H; Hidalgo AM; van Arendonk JAM; Knol EF; Bastiaansen JWM
    Genet Sel Evol; 2017 Jun; 49(1):51. PubMed ID: 28651536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic predictions for crossbred dairy cattle.
    VanRaden PM; Tooker ME; Chud TCS; Norman HD; Megonigal JH; Haagen IW; Wiggans GR
    J Dairy Sci; 2020 Feb; 103(2):1620-1631. PubMed ID: 31837783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of test-day model (co)variance components across breeds using New Zealand dairy cattle data.
    Vanderick S; Harris BL; Pryce JE; Gengler N
    J Dairy Sci; 2009 Mar; 92(3):1240-52. PubMed ID: 19233817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of autozygosity in crossbreds between autochthonous and cosmopolitan breeds of swine: a simulation study.
    Fabbri MC; Lozada-Soto E; Tiezzi F; Čandek-Potokar M; Bovo S; Schiavo G; Fontanesi L; Muñoz M; Ovilo C; Bozzi R
    Animal; 2024 Feb; 18(2):101070. PubMed ID: 38401921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of QTL properties on the accuracy of multi-breed genomic prediction.
    Wientjes YC; Calus MP; Goddard ME; Hayes BJ
    Genet Sel Evol; 2015 May; 47(1):42. PubMed ID: 25951906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices.
    Lourenco DA; Tsuruta S; Fragomeni BO; Chen CY; Herring WO; Misztal I
    J Anim Sci; 2016 Mar; 94(3):909-19. PubMed ID: 27065253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.