BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37407951)

  • 41. Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering.
    Kim B; Lee S; Jeong D; Yang J; Oh MK; Lee J
    PLoS One; 2014; 9(10):e105322. PubMed ID: 25329548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of Different Biochemicals by
    Didak Ljubas B; Novak M; Trontel A; Rajković A; Kelemen Z; Marđetko N; Grubišić M; Pavlečić M; Tominac VP; Šantek B
    Front Microbiol; 2022; 13():812457. PubMed ID: 35308344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness.
    Eastman AW; Heinrichs DE; Yuan ZC
    BMC Genomics; 2014 Oct; 15():851. PubMed ID: 25280501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste.
    Maina S; Schneider R; Alexandri M; Papapostolou H; Nychas GJ; Koutinas A; Venus J
    Bioresour Technol; 2021 Sep; 335():125155. PubMed ID: 34015563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum.
    Yang J; Kim B; Kim H; Kweon Y; Lee S; Lee J
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2303-13. PubMed ID: 26113219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol.
    Gascoyne JL; Bommareddy RR; Heeb S; Malys N
    Metab Eng; 2021 Sep; 67():262-276. PubMed ID: 34224897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid
    Lee YG; Seo JH
    Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of carbon flux and NADH/NAD
    Lu P; Gao T; Bai R; Yang J; Xu Y; Chu W; Jiang K; Zhang J; Xu F; Zhao H
    J Biotechnol; 2022 Nov; 358():67-75. PubMed ID: 36087783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production and properties of 2,3-butanediol; the effect of various nutrient materials on the fermentation of starch by Aerobacillus polymyxa.
    FRATKIN SB; ADAMS GA
    Can J Res; 1946 Jan; 24():29-38. PubMed ID: 21017906
    [No Abstract]   [Full Text] [Related]  

  • 53. Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources.
    Koutinas AA; Yepez B; Kopsahelis N; Freire DMG; de Castro AM; Papanikolaou S; Kookos IK
    Bioresour Technol; 2016 Mar; 204():55-64. PubMed ID: 26773945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Paenibacillus polymyxa, a Jack of all trades.
    Langendries S; Goormachtig S
    Environ Microbiol; 2021 Oct; 23(10):5659-5669. PubMed ID: 33684235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Paenibacillus polymyxa species is abundant among hydrogen-producing facultative anaerobic bacteria in Lake Averno sediment.
    Lal S; Romano S; Chiarini L; Signorini A; Tabacchioni S
    Arch Microbiol; 2012 May; 194(5):345-51. PubMed ID: 22038026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9.
    Gao J; Xu YY; Li FW; Ding G
    Lett Appl Microbiol; 2013 Oct; 57(4):274-81. PubMed ID: 23701367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insight into metabolic pathways of the potential biofuel producer, Paenibacillus polymyxa ICGEB2008.
    Adlakha N; Pfau T; Ebenhöh O; Yazdani SS
    Biotechnol Biofuels; 2015; 8():159. PubMed ID: 26413158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a native promoter P
    Li H; Ding Y; Zhao J; Ge R; Qiu B; Yang X; Yao L; Liu K; Wang C; Du B
    J Biotechnol; 2019 Apr; 295():19-27. PubMed ID: 30831123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological Control Efficacy and Action Mechanism of
    Kim B; Park AR; Song CW; Song H; Kim JC
    Front Microbiol; 2022; 13():914589. PubMed ID: 35910601
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation.
    Maina S; Stylianou E; Vogiatzi E; Vlysidis A; Mallouchos A; Nychas GE; de Castro AM; Dheskali E; Kookos IK; Koutinas A
    Bioresour Technol; 2019 Feb; 274():343-352. PubMed ID: 30529482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.